SEARCH

SEARCH BY CITATION

References

  • Anderson, D. J. (1992) Molecular control of neural development. In: “Molecular Neurobiology.” Hall, Z. W., (ed.) Sunderland, MA: Sinauer Associates, Inc., pp 355387.
  • Blackshaw, S. E. and Warner, A. E. (1976) Alterations in resting membrane properties during neural plate stages of development of the nervous system. J. Physiol. (Lond.) 225: 231247.
  • Bordzilovskaya, N. P., Detlaff, T. A., Kuhon, S. T. and Malacinski, G. M. (1989) “Developmental Biology of the Axolotl.” Amstrong, J. B. and Malacinski, G. M. (eds) New York: Oxford University Press, pp 201291.
  • Borgens, R. B., Shi, R., Mohr, T. J., and Jaeger, C. B. (1994) Mammalian cortical astrocytes align themselves in a physiological voltage gradient. Exp. Neurology 128: 4149.
  • Borgens, R. B. (1992) Applied voltages in spinal cord reconstruction: history strategies, and behavioural models. In: “Spinal Cord Dysfunction, Volume III: Functional Stimulation,” Illis, L. S. (ed.) Oxford: Oxford University Press, pp 110145.
  • Cooper, M. S. and Keller, R. E. (1984) Perpendicular orientation and directional migration of amphibian neural crest cells in DC electrical fields. Proc. Natl. Acad. Sci. U.S.A. 81: 160164.
  • Decker, R. S. (1981) Disassembly of the zonula occludens during amphibian neurulation. Dev. Biol. 81: 1222.
  • Erickson, C. A. and Nuccitelli, R. (1984) Embryonic fibroblast motility and orientation can be influenced by physiological electric fields. J. Cell Biol. 98: 296307.
  • Hinkle, L., McCaig, C. D., and Robinson, K. R. (1981) The direction of growth of differentiating neurons and myoblasts from frog embryos in an applied electric field. J. Physiol. 314: 121135.
  • Hotary, K. B. and Robinson, K. R. (1990) Endogenous electrical currents and the resultant voltage gradients in the chick embryo. Dev. Biol. 140: 149160.
  • Hotary, K. B. and Robinson, K. R. (1992) Evidence of a role for endogenous electrical fields in chick embryo development. Development 114: 985996.
  • Jaffe L. F. and Nuccitelli, R. (1974) An ultrasensitive vibrating probe for measuring steady extracellular currents. J. Cell Biol. 63: 61428.
  • Jaffe, L. F. and Stern, C. D. (1979) Strong electrical currents leave the primitive streak of chick embryos. Science 206: 569571.
  • Jessell, T. M. and Melton, D. A. (1992) Diffusible factors in vertebrate embryonic induction. Cell 68: 257270.
  • Kirschner, L. B. (1973) Electrolyte transport across the body surface of freshwater fish and amphibia. In: “Transport Mechanisms in Epithelia.” Ussing, H. H. and Thorn, N. A. (eds). Copenhagen: Munksgaard, pp 447460.
  • McCaig, C. D. and Dover, P. J. (1989) On the mechanism of oriented myoblast differentiation in an applied electric field. Biol. Bull. 176: 140144.
  • McCaig, C. D. and Robinson, K. R. (1982) The ontogeny of the transepidermal potential difference in frog embryos. Dev. Biol. 90: 335339.
  • McCaig, C. D. (1986) Dynamic aspects of amphibian neurite growth and the effects of an applied electric field. J. Physiol. 375: 5569.
  • Messenger, E. A. and Warner, A. E. (1979) The function of the sodium pump during differentiation of amphibian embryonic neurones. J. Physiol. (Lond.) 292: 85105.
  • Metcalf, M. E. M. and Borgens, R. B. (1994) Weak applied voltages interfere with amphibian morphogenesis and pattern. J. Exp. Zool. 268: 322338.
  • Metcalf, M. E. M., Shi, R., and Borgens, R. B. (1994) Endogenous ionic currents and voltages in amphibian embryos. J. Exp. Zool. 268: 307322.
  • Nuccitelli, R. (1988) Physiological electric fields can influence cell motility, growth, and polarity. Adv. Cell Biol. 2: 213233.
  • O'Farrell, P. H. (1994) Unanimity waits in the wings. Nature 368: 188189.
  • Patel, N. and Poo, M.-M. (1982) Orientation of neurite growth by extracellular electric fields. J. Neurosci. 2: 483496.
  • Regen, C. M., and Steinhardt, R. A. (1986) Global properties of the Xenopus blastula are mediated by a high-resistance epithelial seal. Dev. Biol. 113: 147154.
  • Robinson, K. R., and Stump, R. F. (1984) Self-generated electrical currents through Xenopus neurulae. J. Physiol. 352: 339.
  • Robinson, H. R., Bubien, J. K., Smith, P. R., and Benos, D. J. (1991) Epithelial sodium conductance in rabbit pre-implantation trophectodermal cells. Dev. Biol. 147: 313321.
  • Robinson, K. R. (1985) The responses of cells to electrical fields, a review. J. Cell Biol. 101: 20232027.
  • Shi, R. and Borgens, R. B. (1994) Embryonic neuroepithelium sodium transport, the resulting physiological potential, and cranial development. Dev. Biol. 165: 105116.
  • Smith, P. R. and Benos, D. J. (1991) Epithelial Na channels. Ann. Rev. Physiol. 53: 509530.
  • Stern, C. D. and MacKenzie, D. O. (1983) Sodium transport and the control of epiblast polarity in the early chick embryo. J. Embryol. Exp. Morphol. 77: 78298.
  • Stump, R. T. and Robinson, K. R. (1983) Xenopus neural crest cell migration in an applied electrical field. J. Cell Biol. 97: 12261233.
  • Warner, A. E. (1985) Factors controlling the early development of the nervous system. In: “Molecular Bases of Neural Development,” Edelman, G. E., Gall, W. E., and Cowan, W. M. (eds). New York: John Wiley & Sons, pp 1134.
  • Wiley, L. M. and Nuccitelli, R. (1986) Detection of transcellular currents and effect of an imposed electric field on mouse blastomeres. In: “Ionic Currents in Development,” Nuccitelli, R. (ed.) New York: Alan R. Liss, PP. 197204.
  • Wilson, E. B. (1925) “The Cell in Development and Heredity, 3rd Edition.” New York: McMillian, p 1056.