SEARCH

SEARCH BY CITATION

References

  • 1
    Reisner Y,Kapoor N,Kirkpatrick D, et al. Transplantation for severe combined immunodeficiency with HLA-A, B, D, DR incompatible parental marrow cells fractioned by soybean agglutinin and sheep red blood cells. Blood 1983; 61: 341348.
  • 2
    Buckley RH,Schiff SE,Schiff RI, et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med 1999; 340: 508516.
  • 3
    Antoine C,Muller S,Cant A, et al. European Group for Blood and Marrow Transplantation; European Society for Immunodeficiency. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: Report of European experience 1968–99. Lancet 2003; 15: 553560.
  • 4
    Caillat-Zucman S,Le Deist F,Haddad E, et al. Impact of HLA matching on outcome of hematopoietic stem cell transplantation in children with inherited diseases: A single center comparative analysis of genoidentical, haploidentical or unrelated donors. Bone Marrow Transplant 2004; 33: 10891095.
  • 5
    Ljungman P,Urbano-Ispizua A,Cavazzana-Calvo M, et al. European Group for Blood and Marrow. Allogeneic and autologous transplantation for hematological diseases, solid tumors and immune disorders: Definitions and current practice in Europe. Bone Marrow Transplant 2006; 37: 439449.
  • 6
    Myers LA,Patel DD,Puck JM,Buckley RH. Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood 2002; 99: 872878.
  • 7
    Stephan JL,Vlekova V,Le Deist F, et al. Severe combined immunodeficiency: A retrospective single-center study of clinical presentation and outcome in 117 patients. J Pediatr 1193; 123: 564572.
  • 8
    Grunebaum E,Mazzolari E,Porta F, et al. Bone marrow transplantation for severe combined immune deficiency. JAMA 2006; 295: 508518.
  • 9
    Reisner Y,Martelli MF. Tolerance induction by ‘megadose’ transplants of CD34+ stem cells: A new option for leukemia patients without an HLA-matched donor. Curr Opin Immunol 2000; 12: 536541.
  • 10
    Handgretinger R,Lang P,Ihm K, et al. Isolation and transplantation of highly purified autologous peripheral CD34+ progenitor cells: purging efficacy, hematopoietic reconstitution and long-term outcome in children with high-risk neuroblastoma. Bone Marrow Transplant 2002, 29: 777783.
  • 11
    Papadimitriou CA,Roots A,Koenigsmann M, et al. Immunomagnetic selection of CD34+ cells from fresh peripheral blood mononuclear cell preparations using two different separation techniques. J Hematother 1995; 4: 539544.
  • 12
    McNiece I,Briddell R,Stoney G, et al. Large-scale isolation of CD34+ cells using the Amgen cell selection device results in high levels of purity and recovery. J Hematother 1997; 6: 511.
  • 13
    Dreger P,Viehmann K,Steinmann J, et al. G-CSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: Comparison of T cell depletion strategies using different CD34+ selection systems or CAMPATH-1. Exp Hematol 1995; 23: 147154.
  • 14
    Arpacı F,Çetin T,Özet A, et al. The excessive numbers of total nucleated cells does not affect the performance of the CliniMACS. J Clin Apher 2004; 19: 197201.
  • 15
    Urbano-Ispizua A,Rozman C,Pimentel P, et al. Spanish Group for Allogenic Peripheral Blood Transplantation. The number of donor CD3(+) cells is the most important factor for graft failure after allogeneic transplantation of CD34+ selected cells from peripheral blood from HLA-identical siblings. Blood 2001; 97: 383387.
  • 16
    Handgratinger R,Lang P,Schumm M, et al. Immunological aspects of haploidentical stem cell transplantation in children. Ann N Y Acad Sci 2001; 938: 340357.
  • 17
    Kernan NA,Bordignon C,Heller G, et al. Graft failure after T-cell-depleted HLA identical marrow transplantation for leukemia: Analysis of risk factors and results of secondary transplants. Blood 1989; 74: 22272236.
  • 18
    Uharek L,Glass B,Gaska T, et al. Influence of donor lymphocytes on the incidence of primary graft failure after allogeneic bone marrow transplantation in a murine model. Br J Haematol 1994; 88: 7987.
  • 19
    Voltarelli JC,Corpuz S,Martin PJ. In vitro comparison of two methods of T cell depletion associated with different rates of graft failure after allogeneic marrow transplantation. Bone Marrow Transplant 1990; 6: 419423.
  • 20
    Buckley RH. Primary immunodeficiency diseases: Dissectors of the immune system. Immunol Rev 2002; 185: 206219.
  • 21
    Klingebiel T,Handgretinger R,Lang P, et al. Haploidentical transplantation for acute lymphoblastic leukemia in childhood. Blood 2004; 18: 181192.
  • 22
    Aversa F,Velardi A,Tabilio A, et al. Haploidentical stem cell transplantation in leukemia. Blood Rev 2001; 15: 111119.
  • 23
    Dal-Cartivo L,Ouachee-Chardin,Hirsch I, et al. Does haploidentical transplantation in children with primary immunodeficiencies have the potential to exploit donor NK cell alloreactivity? Bone Marrow Transplant 2004; 34: 945947.
  • 24
    Przepiorka D,Weisdorf D,Martin P, et al. Consensus conference on acute GvHD grading. Bone Marrow Transplant 1995; 15: 82528.
  • 25
    Bearman SI,Appelbaum FR,Buckner CD, et al. Regimen-related toxicity in patients undergoing bone marrow transplantation. J Clin Oncol 1988; 6: 15621568.