Microduplication of Xq24 and Hartsfield syndrome with holoprosencephaly, ectrodactyly, and clefting

Authors


  • How to Cite this Article: Takenouchi T, Okuno H, Kosaki R, Ariyasu D, Torii C, Momoshima S, Harada N, Yoshihashi H, Takahashi T, Awazu M, Kosaki K. 2012. Microduplication of Xq24 and Hartsfield syndrome with holoprosencephaly, ectrodactyly, and clefting. Am J Med Genet Part A 158A: 2537–2541.

Abstract

The combination of holoprosencephaly and ectrodactyly, also known as Hartsfield syndrome, represents a unique genetic entity. An X-linked recessive mode of transmission has been suggested for this condition based on the observation that male patients have preferentially been affected. Thus far, no candidate genes have been suggested on the X chromosome. We report a male patient with a full-blown Hartsfield syndrome phenotype who had microduplication at Xq24 involving four genes. He presented with bilateral ectrodactyly of the hands (both hands had four fingers with a deep gap between the 2nd and 3rd digits), cleft lip and palate, and a depressed nasal bridge. Magnetic resonance imaging of the brain revealed lobar holoprosencephaly. His G-banded karyotype was normal. Array comparative genomic hybridization (CGH) using the Agilent 244K Whole Human Genome CGH array revealed a microduplication at Xq24 of 210 kb. Parental testing revealed that the deletion was derived from the asymptomatic mother. Of the genes on the duplicated interval, the duplications of SLC25A43 and SLC25A5 appeared to be the most likely to explain the patient's phenotype. From a clinical standpoint, it is important to point out that the propositus, who performs relatively well with holoprosencephaly and has a developmental quotient around 70, has survived multiple life-threatening episodes of hypernatremia. Awareness of the risk of hypernatremia is of great importance for the anticipatory management of patients with ectrodactyly and an oral cleft, even in the absence of overt hypotelorism. © 2012 Wiley Periodicals, Inc.

Ancillary