• convergent functional genomics;
  • bipolar;
  • animal models;
  • GWAS;
  • gene expression


  1. Top of page
  2. Abstract

Genetic and gene expression studies, in humans and animal models of psychiatric and other medical disorders, are becoming increasingly integrated. Particularly for genomics, the convergence and integration of data across species, experimental modalities and technical platforms is providing a fit-to-disease way of extracting reproducible and biologically important signal, in contrast to the fit-to-cohort effect and limited reproducibility of human genetic analyses alone. With the advent of whole-genome sequencing and the realization that a major portion of the non-coding genome may contain regulatory variants, Convergent Functional Genomics (CFG) approaches are going to be essential to identify disease-relevant signal from the tremendous polymorphic variation present in the general population. Such work in psychiatry can provide an example of how to address other genetically complex disorders, and in turn will benefit by incorporating concepts from other areas, such as cancer, cardiovascular diseases, and diabetes. © 2013 Wiley Periodicals, Inc.


  1. Top of page
  2. Abstract

“Coming together is a beginning;

keeping together is progress;

working together is success”.

-Henry Ford

Psychiatric disorders are phenotypically and biologically complex, heterogeneous, overlapping, and interdependent [Niculescu, 2006; Niculescu et al., 2006; Niculescu and Le-Niculescu, 2010a]. Unraveling their genetic basis by human genetic studies has proven arduous. The combination of complex genetics with imprecise clinical nosology, relying on patient self-report rather than on objective laboratory tests, has made this one of the difficult challenges in science. Given that the rewards of a better understanding range from alleviating mental illness and suffering to improved brain performance and understanding how the mind works, the prize is commensurate with the degree of difficulty. Technical and analytical breakthroughs give reason for optimism. I will focus in this review paper on the high yield of integrating genetic and gene expression studies, from humans and animal models, using Convergent Functional Genomics in bipolar disorder as an example [Niculescu et al., 2000; Ogden et al., 2004; Le-Niculescu et al., 2008, 2009a; McGrath et al., 2009; Patel et al., 2010]. Similar progress has been made in schizophrenia [Ayalew et al., 2012], anxiety disorders [Le-Niculescu et al., 2011], and alcohol abuse [Rodd et al., 2007]. Advances in phenotyping (phenomics) [Niculescu et al., 2006], and practical outcomes in terms of blood biomarker tests [Le-Niculescu et al., 2009b; Kurian et al., 2011], go hand in hand with such research. It is becoming clear from all this work that genes are shared across disorders, if one takes a DSM view, or that they combine in various ways to give different phenotypes, if one takes a more biological view.

Animal Models

Animal models are developed and used for two main reasons: a better understanding of the disorder (including at a gene expression level), and the testing of new drugs. Animal models of bipolar disorder can broadly be classified into genetic and environmentally induced. We will confine our discussion to rodent models, which are much more experimentally tractable and widely used than those of other species (Table I). The genetic models arise from naturally occurring or inbred strains, or more often from transgenic manipulation (genetic engineering) of candidate genes hypothesized to be involved in bipolar disorder. For the environmentally induced models, pharmacological manipulation and different stress-related paradigms are used to mimic different aspects of bipolar disorder. Usually, the animal model recapitulates features of one or the other of the two antithetical phases of the illness—mania versus depression, with the sole exception to date of the DBP KO mouse model [Le-Niculescu et al., 2008]. It is important to note that while there is a nosological distinction between depression and bipolar disorder, the genetics, biology, and clinical symptomatology involved are likely part of a continuum–spectrum [Akiskal, 2007; Niculescu et al., 2010].

Table I. Animal Models for Bipolar Disorder: Recent and/or Key Studies
Genetically engineeredNaturally occurring/inbred strainsPharmacological modelsOther environmental manipulations
DBP [Le-Niculescu et al., 2008, 2011]Nile grass rat [Ashkenazy-Frolinger et al., 2010]Methamphetamine [Niculescu et al., 2000; Macedo et al., 2013]Learned helplessness [Mingmalairak et al., 2010]
CLOCK [Roybal et al., 2007; Mukherjee et al., 2010; Arey et al., 2013]Flinders Sensitive Line (FSL) rats [Malkesman and Weller, 2009]Methamphetamine/valproate [Ogden et al., 2004]Isolation housing [Le-Niculescu et al., 2008; Niwa et al., 2013]
CTNNB1 [Gould et al., 2008]Wistar Kyoto (WKY) rats [Will et al., 2003; Malkesman and Weller, 2009]Amphetamine-chlordiazepoxide [Kelly et al., 2009]Forced swim test [Le-Niculescu et al., 2008]
POLG [Kasahara et al., 2006; Kubota et al., 2010]Madison (MSN) [Saul et al., 2012]Lithium [Gould et al., 2007; Johnson et al., 2009; Kovacsics and Gould, 2010]Tail suspension test [Le-Niculescu et al., 2008]
HINT1 [Barbier and Wang, 2009] Other mood stabilizers: Lamotrigene [Li et al., 2010], Topiramate [Bourin et al., 2009]Restraint stress [Johnson et al., 2009; Koo et al., 2010]
GRIN2A [Taniguchi et al., 2009] Ouabain [Herman et al., 2007]Shock-induced aggression [Kovacsics and Gould, 2010]
WFS1 [Kato et al., 2008] GBR12909 [Young et al., 2010a] 
DAT [van Enkhuizen et al., 2012; Young et al., 2010b]   
ERK1 [Engel et al., 2009]   
GRIK2 [Shaltiel et al., 2008; Malkesman et al., 2010]   
DGKB [Kakefuda et al., 2010]   
ATP1A3 [Kirshenbaum et al., 2012]   
FBXL3 [Keers et al., 2012]   
BI-1 [Hunsberger et al., 2011]   
CACNA1C [Dao et al., 2010]   
ANK3 [Leussis et al., 2012]   

The most widespread pharmacological model to date involves use of stimulants (amphetamines, methamphetamine) to mimic the manic phase of bipolar disorder [Niculescu et al., 2000]. Withdrawal from the stimulant can also mimic the depressive phase of the disorder. Sometimes, an anxiolytic agent is added, on the premise that mitigating the anxiogenic side-effects of stimulants leads to modeling of euphoric mania [Kelly et al., 2009]. However, that approach is questionable, as human bipolar patients naturalistically often display co-morbid anxiety and/or irritability as part of their bipolar clinical picture.

A more systematic pharmacogenomic approach used a comparison of the gene expression effects of a disease-mimicking stimulant (methamphetamine) and a disease-treating mood stabilizing agent (valproate) [Ogden et al., 2004], as a way of prioritizing genes that are affected by both treatments, especially the genes that are changed in opposite directions by the disease agonist and the disease antagonist. Moreover, gene expression effects were mapped in key disease-relevant brain regions, not in the whole brain [Ogden et al., 2004]. That work was subsequently extended to look at the gene expression changes in blood from the animals on the different treatments, as a way of identifying brain–blood biomarkers [Le-Niculescu et al., 2009b].

Only one genetic model to date, the DBP (D-box binding protein) knock-out mouse, has been shown to mimic both phases of the illness, using clinically relevant environmental manipulations [Le-Niculescu et al., 2008]. DBP is a circadian clock gene candidate for bipolar disorder, that was identified in earlier gene expression studies [Niculescu et al., 2000] in pharmacogenomic models and maps to a locus implicated in bipolar disorder in humans. At baseline, the knock-out animals are depressed compared to wild-type controls. During exposure to chronic stress (isolation housing) and acute stress (experimental handling), the mice exhibit a switch in phenotype to a manic-like phase, characterized by increased activity and increased hedonic behavior. This two hit paradigm (genetic vulnerability, followed by environmental stressors) mimics very well the human condition. The fact that a single gene constitutive knock-out has such a broad phenotype exceeded apriori expectations. It may be due in part to the fact that the gene knocked-out is a transcription factor, responsible for setting in motion a cascade of other changes, and also due to the fact that it is a circadian clock gene, which are emerging as key molecular underpinnings of mood disorders. Comprehensive gene expression studies in brain and blood, with and without exposure to stress, were carried out in this animal model, generating additional candidate genes and blood biomarkers for bipolar disorder [Le-Niculescu et al., 2008]. Treatment studies in this model using omega-3 fatty acids led to a normalization of the phenotype [Le-Niculescu et al., 2011].

Another genetic model, a knock-out of the circadian clock gene CLOCK, has been originally described to have a phenotype that mimics only the manic side of the illness [Roybal et al., 2007]. More recent work with it involving brain region-specific manipulation of gene expression has revealed a mixed mood phenotype [Mukherjee et al., 2010]. Other recently described genetically engineered models for manic-like behavior involve manipulation of the genes DAT (dopamine transporter) [Young et al., 2010b], GRIN2A (NMDA receptor subunit 2A) [Taniguchi et al., 2009], HINT1 (protein kinase C interacting protein) [Barbier and Wang, 2009], ERK1 (extracellular signal regulated kinase 1) [Engel et al., 2009], and GRIK2 (metabotropic glutamate receptor 6) [Shaltiel et al., 2008; Malkesman et al., 2010]. Candidates emerging from genome-wide association studies of bipolar disorder (CACNA1C [Dao et al., 2010], ANK3 [Leussis et al., 2012]) were also validated in animal models.

An interesting model, supportive of a role for mitochondrial involvement in bipolar disorder, is that of POLG1 (mitochondrial DNA polymerase) transgenic mice, where mutant POLG1 is expressed in a neuron-specific manner. These mice exhibit periodic activity changes and altered circadian rhythm, similar to bipolar cycling [Kasahara et al., 2006]. Subsequent studies comparing gene expression changes in these mutant mice to human postmortem brain gene expression changes in bipolar subjects identified two overlapping genes [Kubota et al., 2010]. One of them, SFPQ (splicing factor proline/glutamine rich), is also a top candidate gene for bipolar disorder from the DBP KO mouse model described above, where it is increased in expression in the amygdala the activated (manic) phase. The second gene, PPIF, encodes cyclophilin D, a component of the mitochondrial permeability transition pore. A blood–brain barrier permeable cyclophilin D inhibitor improved the abnormal behavior of the POLG1 mice, suggesting a potential lead for new drug discovery efforts.

An area of emerging interest is that of small regulatory RNAs. It is possible that broad disease-relevant phenotypes may be obtained in mice in the future by manipulating microRNAs, which, similar to transcription factors like DBP, regulate many other genes [Miller et al., 2012].

Human Genetic Studies

Over the last few years, in concert with other fields, genetic studies for bipolar disorder have been dominated by genome-wide association studies (GWAS) [Wellcome Trust Case Control Consortium 2007; Baum et al., 2008; Sklar et al., 2008; Scott et al., 2009; Smith et al., 2009; Soronen et al., 2010], and to a lesser extent copy-number variants (CNV) studies [Lachman et al., 2007; Zhang et al., 2009], and more recently, whole-genome sequencing studies [Kiezun et al., 2012]. GWAS studies to date have identified few polymorphisms that meet the genome-wide statistical threshold for. Those few findings in turn are not reproduced as statistically significant in independent GWAS, although some show additional evidence in meta-analyses [Ferreira et al., 2008; Schulze et al., 2009; Liu et al., 2011; Williams et al., 2011; Green et al., 2012], especially when samples from different psychiatric disorders are combined, leading one to suspect those gene variants have to do with basic brain and body functions shared across disorders [Steinberg et al., 2012; Smoller et al., 2013]. Consistent with that view, the findings tend to be in obscure, housekeeping-type genes (ANK3, CACNA1C, ODZ4), in contrast to the more biologically interesting genes implicated by gene expression studies in animal models and in human postmortem brain from subjects with bipolar and related disorders. A discussion of the reasons for this limited success of GWAS has been ongoing in the field [Niculescu and Le-Niculescu, 2010b], but an emerging explanation is that genetic heterogeneity at the SNP level is a contributory factor. As such, gene-level analyses are much more likely to be reproducible [Ayalew et al., 2012]. In addition, gene-level analyses permit cross-platforms, cross-methodologies, and cross-species integration [Le-Niculescu et al., 2009a; Patel et al., 2010], particularly with animal models and gene expression studies (Fig. 1), which can help with identification and prioritization of disease-relevant genes.


Figure 1. Convergnt functional genomics.

Download figure to PowerPoint

Human Gene Expression Studies

Gene expression data may be the Rosetta Stone helping to tie together and unravel epistasis (co-acting gene expression (CAGE) [Niculescu et al., 2000], “genes that change together work together”), as well as regulatory networks of non-coding SNPs [Dunham et al., 2012], epigenetic changes, chromatin modifications, non-coding RNAs, and transcription factors responsive to environmental stimuli. Human gene expression studies have been carried out in postmortem human brains tissue [Banigan et al., 2013], as well as in peripheral blood [Le-Niculescu et al., 2009b], fibroblasts [Yang et al., 2009], olfactory epithelium-derived neurons [Tajinda et al., 2010], and more recently in induced pluripotent stem cells (iPSC)-derived neurons [Lin et al., 2011; Brennand et al., 2011]. Each particular approach has strengths and limitations.


The integration of animal model and human studies has occurred either as hypothesis-driven validation, or as discovery-driven convergent integration of datasets.

The first approach takes a finding from one line of work, and studies it in the other. For example, genetically engineered mice of human candidate genes for mood disorders have been generated (DBP, CLOCK, ANK3, CANA1C, and others), as described above, and are proving to be useful animal models for the disorder. Conversely, a gene expression finding from animal model studies is pursued in candidate gene association studies in human populations. One such example from our work is that of RORB (RAR-related orphan receptor beta), another circadian clock gene. RORB was identified as changed in expression in the brain of DBP KO mice [Le-Niculescu et al., 2008]. It was then tested and shown to have genetic association with bipolar disorder in a human pediatric bipolar population [McGrath et al., 2009]. The rationale for studying a pediatric bipolar population was that pediatric bipolar subjects exhibit more rapid cycling and changes in mood state (switching), which are likely underpinned at a molecular level by circadian clock genes.

The second approach, the discovery-based integration of animal model and human data, has had its most systematic embodiment to date through Convergent Functional Genomics (CFG) (Fig. 1). The approach is predicated on using large datasets as well as manually curated databases of the published literature to date [Bertsch et al., 2005; Niculescu and Le-Niculescu, 2010a]. Each individual line of work has strengths and limitations. Animal model data can provide sensitivity and ability to conduct experimental manipulations not feasible in humans. Human data provides more specificity and relevance to the human disease. Using a set of mouse experiments as a driving force [Ogden et al., 2004; Le-Niculescu et al., 2008], or using human blood biomarker [Le-Niculescu et al., 2009b] or GWAS data Le-Niculescu et al., 2009a; Patel et al., 2010] as a driving force, such studies have identified and prioritized candidate genes and biomarkers for bipolar disorder that show good reproducibility as well as predictive ability in independent cohorts [Le-Niculescu et al., 2009b; Kurian et al., 2011; Ayalew et al., 2012; Patel et al., 2010].

The mining of GWAS data for bipolar disorder with a CFG approach was particularly successful [Le-Niculescu et al., 2009a; Patel et al., 2010], and holds generalizable lessons. The integration of GWAS data had as a first step the selection of SNPs. A nominal P-value threshold, not a genome-wide significance threshold, was used to select the positive SNPs from each GWAS, as it was assumed that most SNPs make only a small contribution to the disorder at a population level, and the work relied on the subsequent integration with other lines of evidence to identify and prioritize true positives. The second step is the conversion of SNPs into genes. From then on, all lines of evidence are tabulated at a gene level. The more lines of evidence, that is, the more times a gene shows up as positive finding across independent studies, platforms, methodologies and species, the higher its CFG score (Fig. 1). This is very similar conceptually to a Google PageRank algorithm, in which the more links to a page, the higher it comes up on the search prioritization list. Human and animal model, genetic and gene expression, datasets were integrated and tabulated. The top candidate genes were then assembled in a panel composed of their component SNPs, and tested in independent cohorts. Each subject in an independent cohort has a genetic risk prediction score (GRPS) based on how many of the SNPs in the panel it was positive for. Using such an approach, a polygenic panel of 56 top candidate genes for bipolar disorder, mined from GWAS using CFG, showed good predictive ability to differentiate, in independent cohorts, between bipolar and controls, as well as between less severe and more severe forms of bipolar disorder [Patel et al., 2010]. As an added feature, this approach identified top candidate genes that have a lot of prior biological evidence and disease relevance, as opposed to the mundane top findings from GWAS alone. For example, at the very top of the candidate gene list for bipolar disorder generated by this mega-analysis is ARNTL [Patel et al., 2010], another circadian clock gene also recently implicated in diabetes [Marcheva et al., 2010]. The top candidate genes for bipolar were then analyzed in terms of distribution in biological pathways and mechanisms, levels of analysis where there is less heterogeneity and a clearer picture emerges. The analysis resulted in the first comprehensive empirically derived model of bipolar disorder pathophysiology to date [Le-Niculescu et al., 2009a]. This led to a proposed understanding of mood as related to cellular and organismal energy, activity, and trophicity, as an adaptive clock-gene mediated synchronization to a favorable or hostile environment [Le-Niculescu et al., 2009a; Niculescu et al., 2010]. Excessive, discordant, or variable reactivity to environmental stimuli leads to clinical illness (depression in a favorable environment, mania in a hostile environment, cycling and switching from one mood state to the other that is not warranted by adaptation to the environment).

We have also used such a strategy for schizophrenia, with similar success [Kurian et al., 2011; Ayalew et al., 2012], showing reproducibility in four independent cohorts. The polygenic approach exemplified in our earlier work [Le-Niculescu et al., 2009b; Kurian et al., 2011; Ayalew et al., 2012; Patel et al., 2010] has now become widely used, with varying success [Derks et al., 2012]. It seems clear, as our work has also shown, that good results depend on the strength of the (endo) phenotype [Fanous et al., 2012; Whalley et al., 2013] and the ability to prioritize genes.

Future Directions

The advances surveyed here occurred over the last decade as a result of collaborations between investigators with different backgrounds, using different approaches. They have opened the door to a better understanding of the genetics, biology, diagnosis and ultimately treatment of bipolar and related mood disorders, paving the way in the near future for individualized/personalized medicine. It is clear that such convergent strategies should continue to be employed and refined for bipolar disorder, in other psychiatric disorders, and in complex medical disorders in general. Psychiatric disorders share similarity at a genetic level with cancer and diabetes in terms of complex genetics, and even in terms of some of the molecular pathways involved [Le-Niculescu et al., 2009b; Marcheva et al., 2010; Niculescu et al., 2010]. Paradigms from cancer could be borrowed in psychiatric research, particularly the classification of genetic variants into risk genes (similar to oncogenes) and protective genes (similar to tumor-suppressor genes). An early proposal for such a classification used the terms psychogenes and psychosis-suppressor genes [Niculescu et al., 2000]. The complexity of these broad groups of disorders however is such that simple binary classifications may be insufficient, and only the complete understanding of the contextual cumulative combinatorics of common gene variants, development and environment may yield the ultimate answer [Patel et al., 2010]. Pathway analyses and mechanistic identification can lead to comprehensive, testable models that move the field beyond current nosological classifications [Niculescu et al., 2010], and lead to better diagnostics and treatments. Personalized medicine, that is pro-active in building resilience, preventive for avoiding environmental risk factors, predictive of whom is at risk and who will respond to treatment, and participatory for the patient and the family, is the ultimate outcome of our work.


  1. Top of page
  2. Abstract

We would like to thank members of the Niculescu laboratory for their input, Ming Tsuang for mentorship and organizing wonderful collaborative groups over the years, and our colleagues in the field for the comprehensive work they are doing. This work was supported by an NIH Directors' New Innovator Award (1DP2OD007363) and a VA Merit Award (1I01CX000139-01) to A.B.N.


  1. Top of page
  2. Abstract

This article was published online on 31 May 2013. Subsequently, it was determined that the final version had not been published, and this was corrected on 19 June 2013. The primary change is found in References, where citations were expanded to the first ten authors where applicable.


  1. Top of page
  2. Abstract
  • Akiskal HS. 2007. The emergence of the bipolar spectrum: validation along clinical-epidemiologic and familial-genetic lines. Psychopharmacol Bull 40:99115.
  • Arey RN, Enwright JF 3rd, Spencer SM, Falcon E, Ozburn AR, Ghose S, Tamminga C, McClung CA. 2013. An important role for Cholecystokinin, a CLOCK target gene, in the development and treatment of manic-like behaviors. Mol Psychiatry.
  • Ashkenazy-Frolinger T, Kronfeld-Schor N, Juetten J, Einat H. 2010. It is darkness and not light: Depression-like behaviors of diurnal unstriped Nile grass rats maintained under a short photoperiod schedule. J Neurosci Methods 186:165170.
  • Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, Winiger E, Breier A, Shekhar A, Amdur R, et al. 2012. Convergent functional genomics of schizophrenia: From comprehensive understanding to genetic risk prediction. Mol Psychiatry 17:887905.
  • Banigan MG, Kao PF, Kozubek JA, Winslow AR, Medina J, Costa J, Schmitt A, Schneider A, Cabral H, Cagsal-Getkin O, et al. 2013. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS ONE 8:e48814.
  • Barbier E, Wang JB. 2009. Anti-depressant and anxiolytic like behaviors in PKCI/HINT1 knockout mice associated with elevated plasma corticosterone level. BMC Neurosci 10:132.
  • Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B, Schulze TG, Cichon S, Rietschel M, Nothen MM, et al. 2008. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 13:197207.
  • Bertsch B, Ogden CA, Sidhu K, Le-Niculescu H, Kuczenski R, Niculescu AB. 2005. Convergent functional genomics: A Bayesian candidate gene identification approach for complex disorders. Methods 37:274279.
  • Bourin M, Chenu F, Hascoet M. 2009. Topiramate and phenytoin anti-immobility effect in the mice forced swimming test is reversed by veratrine: Implication for bipolar depression treatment. Behav Brain Res 205:421425.
  • Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D, et al. 2011. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221225.
  • Dao DT, Mahon PB, Cai X, Kovacsics CE, Blackwell RA, Arad M, Shi J, Zandi PP, O'Donnell P, Knowles JA, et al. 2010. Mood disorder susceptibility gene CACNA1C modifies mood-related behaviors in mice and interacts with sex to influence behavior in mice and diagnosis in humans. Biol Psychiatry 68:801810.
  • Derks EM, Vorstman JA, Ripke S, Kahn RS, Ophoff RA. 2012. Investigation of the genetic association between quantitative measures of psychosis and schizophrenia: A polygenic risk score analysis. PLoS ONE 7:e37852.
  • Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J, Kaul R, et al. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:5774.
  • Engel SR, Creson TK, Hao Y, Shen Y, Maeng S, Nekrasova T, Landreth GE, Manji HK, Chen G. 2009. The extracellular signal-regulated kinase pathway contributes to the control of behavioral excitement. Mol Psychiatry 14:448461.
  • Fanous AH, Zhou B, Aggen SH, Bergen SE, Amdur RL, Duan J, Sanders AR, Shi J, Mowry BJ, Olincy A, et al. 2012. Genome-wide association study of clinical dimensions of schizophrenia: Polygenic effect on disorganized symptoms. Am J Psychiatry 169:13091317.
  • Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, Fan J, Kirov G, Perlis RH, Green EK, et al. 2008. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40:10561058.
  • Gould TD, O'Donnell KC, Picchini AM, Manji HK. 2007. Strain differences in lithium attenuation of d-amphetamine-induced hyperlocomotion: A mouse model for the genetics of clinical response to lithium. Neuropsychopharmacology 32:13211333.
  • Gould TD, O'Donnell KC, Picchini AM, Dow ER, Chen G, Manji HK. 2008. Generation and behavioral characterization of beta-catenin forebrain-specific conditional knock-out mice. Behav Brain Res 189:117125.
  • Green EK, Hamshere M, Forty L, Gordon-Smith K, Fraser C, Russell E, Grozeva D, Kirov G, Holmans P, Moran JL, et al. 2012. Replication of bipolar disorder susceptibility alleles and identification of two novel genome-wide significant associations in a new bipolar disorder case-control sample. Mol Psychiatry
  • Herman L, Hougland T, El-Mallakh RS. 2007. Mimicking human bipolar ion dysregulation models mania in rats. Neurosci Biobehav Rev 31:874881.
  • Hunsberger JG, Machado-Vieira R, Austin DR, Zarate C, Chuang DM, Chen G, Reed JC, Manji HK. 2011. Bax inhibitor 1, a modulator of calcium homeostasis, confers affective resilience. Brain Res 1403:1927.
  • Johnson SA, Wang JF, Sun X, McEwen BS, Chattarji S, Young LT. 2009. Lithium treatment prevents stress-induced dendritic remodeling in the rodent amygdala. Neuroscience 163:3439.
  • Kakefuda K, Oyagi A, Ishisaka M, Tsuruma K, Shimazawa M, Yokota K, Shirai Y, Horie K, Saito N, Takeda J, et al. 2010. Diacylglycerol kinase beta knockout mice exhibit lithium-sensitive behavioral abnormalities. PLoS ONE 5:e13447.
  • Kasahara T, Kubota M, Miyauchi T, Noda Y, Mouri A, Nabeshima T, Kato T. 2006. Mice with neuron-specific accumulation of mitochondrial DNA mutations show mood disorder-like phenotypes. Mol Psychiatry 11:577593, 523.
  • Kato T, Ishiwata M, Yamada K, Kasahara T, Kakiuchi C, Iwamoto K, Kawamura K, Ishihara H, Oka Y. 2008. Behavioral and gene expression analyses of Wfs1 knockout mice as a possible animal model of mood disorder. Neurosci Res 61:143158.
  • Keers R, Pedroso I, Breen G, Aitchison KJ, Nolan PM, Cichon S, Nothen MM, Rietschel M, Schalkwyk LC, Fernandes C. 2012. Reduced anxiety and depression-like behaviours in the circadian period mutant mouse after hours. PLoS ONE 7:e38263.
  • Kelly MP, Logue SF, Dwyer JM, Beyer CE, Majchrowski H, Cai Z, Liu Z, Adedoyin A, Rosenzweig-Lipson S, Comery TA. 2009. The supra-additive hyperactivity caused by an amphetamine–chlordiazepoxide mixture exhibits an inverted-U dose response: Negative implications for the use of a model in screening for mood stabilizers. Pharmacol Biochem Behav 92:649654.
  • Kiezun A, Garimella K, Do R, Stitziel NO, Neale BM, McLaren PJ, Gupta N, Sklar P, Sullivan PF, Moran JL, et al. 2012. Exome sequencing and the genetic basis of complex traits. Nat Genet 44:623630.
  • Kirshenbaum GS, Clapcote SJ, Petersen J, Vilsen B, Ralph MR, Roder JC. 2012. Genetic suppression of agrin reduces mania-like behavior in Na+, K+ -ATPase alpha3 mutant mice. Genes Brain Behav 11:436443.
  • Koo JW, Russo SJ, Ferguson D, Nestler EJ, Duman RS. 2010. Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci USA 107:26692674.
  • Kovacsics CE, Gould TD. 2010. Shock-induced aggression in mice is modified by lithium. Pharmacol Biochem Behav 94:380386.
  • Kubota M, Kasahara T, Iwamoto K, Komori A, Ishiwata M, Miyauchi T, Kato T. 2010. Therapeutic implications of down-regulation of cyclophilin D in bipolar disorder. Int J Neuropsychopharmacol 114.
  • Kurian SM, Le-Niculescu H, Patel SD, Bertram D, Davis J, Dike C, Yehyawi N, Lysaker P, Dustin J, Caligiuri M, et al. 2011. Identification of blood biomarkers for psychosis using convergent functional genomics. Molecular psychiatry 16:3758.
  • Lachman HM, Pedrosa E, Petruolo OA, Cockerham M, Papolos A, Novak T, Papolos DF, Stopkova P. 2007. Increase in GSK3beta gene copy number variation in bipolar disorder. Am J Med Genet Part B 144B:259265.
  • Le-Niculescu H, McFarland M, Ogden C, Balaraman Y, Patel S, Tan J, Rodd Z, Paulus M, Geyer M, Edenberg H, et al. 2008. Phenomic, convergent functional genomic, and biomarker studies in a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. Am J Med Genet Part B 147B:134166.
  • Le-Niculescu H, Patel SD, Bhat M, Kuczenski R, Faraone SV, Tsuang MT, McMahon FJ, Schork NJ, Nurnberger JI Jr, Niculescu AB 3rd. 2009a. Convergent functional genomics of genome-wide association data for bipolar disorder: Comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet Part B 150B:155181.
  • Le-Niculescu H, Kurian SM, Yehyawi N, Dike C, Patel SD, Edenberg HJ, Tsuang MT, Salomon DR, Nurnberger JI Jr, Niculescu AB. 2009b. Identifying blood biomarkers for mood disorders using convergent functional genomics. Mol Psychiatry 14:156174.
  • Le-Niculescu H, Balaraman Y, Patel SD, Ayalew M, Gupta J, Kuczenski R, Shekhar A, Schork N, Geyer MA, Niculescu AB. 2011. Convergent functional genomics of anxiety disorders: Translational identification of genes, biomarkers, pathways and mechanisms. Transl Psychiatry 1:e9.
  • Le-Niculescu H, Case NJ, Hulvershorn L, Patel SD, Bowker D, Gupta J, Bell R, Edenberg HJ, Tsuang MT, Kuczenski R, et al. 2011. Convergent functional genomic studies of omega-3 fatty acids in stress reactivity, bipolar disorder and alcoholism. Transl Psychiatry 1:e4.
  • Leussis MP, Berry-Scott EM, Saito M, Jhuang H, de Haan G, Alkan O, Luce CJ, Madison JM, Sklar P, Serre T, et al. 2012. The ANK3 bipolar disorder gene regulates psychiatric-related behaviors that are modulated by lithium and stress. Biol Psychiatry
  • Li N, He X, Qi X, Zhang Y, He S. 2010. The mood stabilizer lamotrigine produces antidepressant behavioral effects in rats: Role of brain-derived neurotrophic factor. J Psychopharmacol 24:17721778.
  • Lin M, Pedrosa E, Shah A, Hrabovsky A, Maqbool S, Zheng D, Lachman HM. 2011. RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS ONE 6:e23356.
  • Liu Y, Blackwood DH, Caesar S, de Geus EJ, Farmer A, Ferreira MA, Ferrier IN, Fraser C, Gordon-Smith K, Green EK, et al. 2011. Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder. Mol Psychiatry 16:24.
  • Macedo DS, de Lucena DF, Queiroz AI, Cordeiro RC, Araujo MM, Sousa FC, Vasconcelos SM, Hyphantis TN, Quevedo J, McIntyre RS, et al. 2013. Effects of lithium on oxidative stress and behavioral alterations induced by lisdexamfetamine dimesylate: Relevance as an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 43C:230237.
  • Malkesman O, Weller A. 2009. Two different putative genetic animal models of childhood depression—A review. Prog Neurobiol 88:153169.
  • Malkesman O, Scattoni ML, Paredes D, Tragon T, Pearson B, Shaltiel G, Chen G, Crawley JN, Manji HK. 2010. The female urine sniffing test: A novel approach for assessing reward-seeking behavior in rodents. Biol Psychiatry 67:864871.
  • Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, et al. 2010. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627631.
  • McGrath CL, Glatt SJ, Sklar P, Le-Niculescu H, Kuczenski R, Doyle AE, Biederman J, Mick E, Faraone SV, Niculescu AB, et al. 2009. Evidence for genetic association of RORB with bipolar disorder. BMC Psychiatry 9:70.
  • Miller BH, Zeier Z, Xi L, Lanz TA, Deng S, Strathmann J, Willoughby D, Kenny PJ, Elsworth JD, Lawrence MS, et al. 2012. MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proc Natl Acad Sci U S A 109:31253130.
  • Mingmalairak S, Tohda M, Murakami Y, Matsumoto K. 2010. Possible involvement of signal transducers and activators of transcription 3 system on depression in the model mice brain. Biol Pharm Bull 33:636640.
  • Mukherjee S, Coque L, Cao JL, Kumar J, Chakravarty S, Asaithamby A, Graham A, Gordon E, Enwright JF III, Dileone RJ, et al. 2010. Knockdown of clock in the ventral tegmental area through RNA interference results in a mixed state of mania and depression-like behavior. Biol Psychiatry 68:503511.
  • Niculescu AB III. 2006. Polypharmacy in oligopopulations: What psychiatric genetics can teach biological psychiatry. Psychiatr Genet 16:241244.
  • Niculescu AB, Le-Niculescu H. 2010a. Convergent functional genomics: What we have learned and can learn about genes, pathways, and mechanisms. Neuropsychopharmacology 35:355356.
  • Niculescu AB, Le-Niculescu H. 2010b. The P-value illusion: How to improve (psychiatric) genetic studies. Am J Med Genet Part B 153B:847849.
  • Niculescu AB III, Segal DS, Kuczenski R, Barrett T, Hauger RL, Kelsoe JR. 2000. Identifying a series of candidate genes for mania and psychosis: A convergent functional genomics approach. Physiol Genomics 4:8391.
  • Niculescu AB, Lulow LL, Ogden CA, Le-Niculescu H, Salomon DR, Schork NJ, Caligiuri MP, Lohr JB. 2006. PhenoChipping of psychotic disorders: A novel approach for deconstructing and quantitating psychiatric phenotypes. Am J Med Genet Part B 141B:653662.
  • Niculescu AB III, Schork NJ, Salomon DR. 2010. Mindscape: A convergent perspective on life, mind, consciousness and happiness. J Affect Disord 123:18.
  • Niwa M, Jaaro-Peled H, Tankou S, Seshadri S, Hikida T, Matsumoto Y, Cascella NG, Kano S, Ozaki N, Nabeshima T, et al. 2013. Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids. Science 339:335339.
  • Ogden CA, Rich ME, Schork NJ, Paulus MP, Geyer MA, Lohr JB, Kuczenski R, Niculescu AB. 2004. Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: An expanded convergent functional genomics approach. Mol Psychiatry 9:10071029.
  • Patel SD, Le-Niculescu H, Koller DL, Green SD, Lahiri DK, McMahon FJ, Nurnberger JI Jr, Niculescu AB III. 2010. Coming to grips with complex disorders: Genetic risk prediction in bipolar disorder using panels of genes identified through convergent functional genomics. Am J Med Genet Part B 153B:850877.
  • Rodd ZA, Bertsch BA, Strother WN, Le-Niculescu H, Balaraman Y, Hayden E, Jerome RE, Lumeng L, Nurnberger JI Jr, Edenberg HJ, et al. 2007. Candidate genes, pathways and mechanisms for alcoholism: An expanded convergent functional genomics approach. Pharmacogenomics J 7:222256.
  • Roybal K, Theobold D, Graham A, Dinieri JA, Russo SJ, Krishnan V, Chakravarty S, Peevey J, Oehrlein N, Birnbaum S, et al. 2007. From the cover: Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci U S A 104:64066411.
  • Saul MC, Gessay GM, Gammie SC. 2012. A new mouse model for mania shares genetic correlates with human bipolar disorder. PLoS ONE 7:e38128.
  • Schulze TG, Detera-Wadleigh SD, Akula N, Gupta A, Kassem L, Steele J, Pearl J, Strohmaier J, Breuer R, Schwarz M, et al. 2009. Two variants in Ankyrin 3 (ANK3) are independent genetic risk factors for bipolar disorder. Mol Psychiatry 14:487491.
  • Scott LJ, Muglia P, Kong XQ, Guan W, Flickinger M, Upmanyu R, Tozzi F, Li JZ, Burmeister M, Absher D, et al. 2009. Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proc Natl Acad Sci U S A 106:75017506.
  • Shaltiel G, Maeng S, Malkesman O, Pearson B, Schloesser RJ, Tragon T, Rogawski M, Gasior M, Luckenbaugh D, Chen G, et al. 2008. Evidence for the involvement of the kainate receptor subunit GluR6 (GRIK2) in mediating behavioral displays related to behavioral symptoms of mania. Mol Psychiatry 13:858872.
  • Sklar P, Smoller JW, Fan J, Ferreira MAR, Perlis RH, Chambert K, Nimgaonkar VL, McQueen MB, Faraone SV, Kirby A, et al. 2008. Whole-genome association study of bipolar disorder. Molecular Psychiatry 13:558569.
  • Smith EN, Bloss CS, Badner JA, Barrett T, Belmonte PL, Berrettini W, Byerley W, Coryell W, Craig D, Edenberg HJ, et al. 2009. Genome-wide association study of bipolar disorder in European American and African American individuals. Mol Psychiatry 14:755763.
  • Smoller JW, Craddock N, Kendler K, Lee PH, Neale BM, Nurnberger JI, Ripke S, Santangelo S, Sullivan PF. 2013. Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet 381:13711379.
  • Soronen P, Ollila HM, Antila M, Silander K, Palo OM, Kieseppa T, Lonnqvist J, Peltonen L, Tuulio-Henriksson A, Partonen T, et al. 2010. Replication of GWAS of bipolar disorder: association of SNPs near CDH7 with bipolar disorder and visual processing. Mol Psychiatry 15:46.
  • Steinberg S, de Jong S, Mattheisen M, Costas J, Demontis D, Jamain S, Pietilainen OP, Lin K, Papiol S, Huttenlocher J, et al. 2012. Common variant at 16p11.2 conferring risk of psychosis. Mol Psychiatry
  • Tajinda K, Ishizuka K, Colantuoni C, Morita M, Winicki J, Le C, Lin S, Schretlen D, Sawa A, Cascella NG. 2010. Neuronal biomarkers from patients with mental illnesses: A novel method through nasal biopsy combined with laser-captured microdissection. Mol Psychiatry 15:231232.
  • Taniguchi S, Nakazawa T, Tanimura A, Kiyama Y, Tezuka T, Watabe AM, Katayama N, Yokoyama K, Inoue T, Izumi-Nakaseko H, et al. 2009. Involvement of NMDAR2A tyrosine phosphorylation in depression-related behaviour. EMBO J 28:37173729.
  • van Enkhuizen J, Geyer MA, Kooistra K, Young JW. 2012. Chronic valproate attenuates some, but not all, facets of mania-like behaviour in mice. Int J Neuropsychopharmacol 111.
  • Wellcome Trust Case Control Consortium. 2007. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661678.
  • Whalley HC, Sprooten E, Hackett S, Hall L, Blackwood DH, Glahn DC, Bastin M, Hall J, Lawrie SM, Sussmann JE, et al. 2013. Polygenic risk and white matter integrity in individuals at high risk of mood disorder. Biol Psychiatry.
  • Will CC, Aird F, Redei EE. 2003. Selectively bred Wistar–Kyoto rats: An animal model of depression and hyper-responsiveness to antidepressants. Mol Psychiatry 8:925932.
  • Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, Georgieva L, Williams NM, Morris DW, Quinn EM, et al. 2011. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry
  • Yang S, Van Dongen HP, Wang K, Berrettini W, Bucan M. 2009. Assessment of circadian function in fibroblasts of patients with bipolar disorder. Mol Psychiatry 14:143155.
  • Young JW, Goey AK, Minassian A, Perry W, Paulus MP, Geyer MA. 2010b. The mania-like exploratory profile in genetic dopamine transporter mouse models is diminished in a familiar environment and reinstated by subthreshold psychostimulant administration. Pharmacol Biochem Behav 96:715.
  • Young JW, Goey AK, Minassian A, Perry W, Paulus MP, Geyer MA. 2010a. GBR 1290 9 administration as a mouse model of bipolar disorder mania: Mimicking quantitative assessment of manic behavior. Psychopharmacology 208:443454.
  • Zhang D, Cheng L, Qian Y, Alliey-Rodriguez N, Kelsoe JR, Greenwood T, Nievergelt C, Barrett TB, McKinney R, Schork N, et al. 2009. Singleton deletions throughout the genome increase risk of bipolar disorder. Mol Psychiatry 14:376380.