The present study provides the first evaluation of related changes in serum levels of bioactive FSH (Bio FSH) and immunoreactive FSH (iFSH), and concurrent dynamics of LH and FSH bioactivity throughout the menstrual cycle of the rhesus monkey. Mean concentrations of Bio FSH were elevated on days 0 and 1 (n = 7; P < 0.05; day 0 = preovulatory LH surge). Data from individual animals revealed that an average (± SEM) of 1.43 ± 0.29 and 2.71 ± 0.61 discrete surges of Bio FSH occurred in each monkey's follicular and luteal phase, respectively. Analysis of the collective data indicated that periods of increased Bio FSH secretory activity spanned days −1 to 1 and 8 to 10 (P < 0.025). Increases in serum Bio FSH and iFSH concentrations were not precisely correlated on a daily basis (38.9%), although 72.2% of the peaks of Bio FSH and iFSH surges occurred within a day of one another. Similarly, only 36.1% of the Bio FSH surges were accompanied by elevations in bioactive LH (Bio LH). A significant rise in Bio LH, but not Bio FSH, occurred on day −1 (P < 0.01). Concentrations of Bio LH, but not Bio FSH, were elevated in the early luteal phase (P < 0.01). The bioactivity/immunoactivity ratios (Bio/I) of LH and FSH were maximal on the day of the preovulatory surge (P < 0.01). On day −1, LH Bio/I significantly increased (P < 0.05), but no change in FSH Bio/I was detected. The Bio/I of LH, but not FSH, remained elevated in the early luteal phase. In summary: the relative increase in Bio FSH exceeds iFSH during the preovulatory surge. Surges of Bio FSH occur during the follicular and luteal phases which potentially could support follicle selection/maturation. Divergencies between circulating LH and FSH biopotency may reflect a differential regulation of secretion and/or biosynthesis of these hormones. The prolonged early luteal elevation of LH Bio/I is consistent with the idea of a functional role of elevated LH biopotency in the maintenance of the corpus luteum.