SEARCH

SEARCH BY CITATION

Keywords:

  • strepsirrhines;
  • color vision;
  • cathemerality;
  • Eulemur macaco flavifrons;
  • opsin genes;
  • primate evolution

Abstract

Recent research has identified polymorphic trichromacy in three diurnal strepsirrhines: Coquerel's sifaka (Propithecus coquereli), black and white ruffed lemurs (Varecia variegata), and red ruffed lemurs (V. rubra). Current hypotheses suggest that the transitions to diurnality experienced by Propithecus and Varecia were necessary precursors to their independent acquisitions of trichromacy. Accordingly, cathemeral lemurs are thought to lack the M/L opsin gene polymorphism necessary for trichromacy. In this study, the M/L opsin gene was sequenced in ten cathemeral blue-eyed black lemurs (Eulemur macaco flavifrons). This analysis identified a polymorphism identical to that of other trichromatic strepsirrhines at the critical amino acid position 285 in exon 5 of the M/L opsin gene. Thus, polymorphic trichromacy is likely present in at least one cathemeral Eulemur species, suggesting that strict diurnality is not necessary for trichromacy. The presence of trichromacy in E. m. flavifrons suggests that a re-evaluation of current hypotheses regarding the evolution of strepsirrhine trichromacy may be necessary. Although the M/L opsin polymorphism may have been independently acquired three times in the lemurid–indriid clade, the distribution of opsin alleles in lemurids and indriids may also be consistent with a common origin of trichromacy in the last common ancestor of either the lemurids or the lemurid–indriid clade. Am. J. Primatol. 71:86–90, 2009. © 2008 Wiley-Liss, Inc.