Vertical stratification of the nutritional value of fruit: Macronutrients and condensed tannins


  • This article was published online 27 May 2014. Subsequently an error was found in Table II, and the correction was published on 10 July 2014.
  • Conflicts of interest: None.


Competing successfully for the best feeding sites is an important behavioral strategy but little is known about how feeding sites vary nutritionally within a fruit tree. To answer this question we tested how the nutritional value of a fruit is influenced by its ripeness and its height within the tree crown. A complementary objective was to assess the nutritional value of the midripe fruit, a food item rarely mentioned in the literature despite being exploited on a daily basis by many frugivores. We measured how the dry weight of pulp, water content, and concentration of macronutrients and condensed tannins varied within the tree crowns of 15 fruit species. Collections occurred early in the fruiting cycle, so as to assess the amount of food in the tree before its exploitation by primates. We found that (1) the upper crown produced fruit densities 4.2 times higher, and a fruit crop 4.8 times larger, than the lower crown of the same tree; (2) considering only midripe and ripe stages, upper-crown fruits contained 28.6% more dry pulp, 21.1% more water, and 13.5% more sugars per dry matter than lower-crown fruits of the same tree; (3) midripe fruits contained 80% of the concentrations of sugars of ripe fruits, making them a sweeter food item than one would expect from the intermediate color of their epidermis; (4) cellulose, hemicellulose, proteins, and ash proportionally decreased in concentration while dry pulp and sugars increased during ripening; and (5) ripe fruits were usually rare in the tree (<0.5% of all fruit available) compared to midripe fruits (3–8%). Overall, upper-crown feeding sites produced a higher density and quality of food than lower-crown sites of the same tree. Our data therefore provide a clear nutritional explanation for why tree-feeding frugivores compete for the highest feeding sites. Am. J. Primatol. 76:1207–1232, 2014. © 2014 Wiley Periodicals, Inc.