Perikymata spacing and distribution on hominid anterior teeth


  • M.C. Dean,

    Corresponding author
    1. Evolutionary Anatomy Unit, Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, UK
    • Evolutionary Anatomy Unit, Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
    Search for more papers by this author
  • D.J. Reid

    1. Department of Oral Biology, Dental School, Newcastle upon Tyne NE2 4BW, UK
    Search for more papers by this author


We documented the spacing and distribution of perikymata on the buccal enamel surface of fossil hominin anterior teeth with reference to a sample of modern human and modern great ape teeth. A sample of 27 anterior teeth attributed to Australopithecus (5 to A. afarensis, 22 to A. africanus) and of 33 attributed to Paranthropus (6 to P. boisei, and 27 to P. robustus) were replicated and sputter-coated with gold to enable reflected light microscopy of their surface topography. Anterior teeth were then divided into 10 equal divisions of buccal crown height. The total perikymata count in each division of crown height was recorded using a binocular microscope fitted with a vernier micrometer eyepiece. Then the mean number of perikymata per millimeter was calculated for each division. Similar comparative data for a modern sample of 115 unworn human anterior teeth and 30 African great ape anterior teeth were collected from ground sections. Perikymata counts in each taxon (together with either known or presumed periodicities of perikymata) were then used to estimate enamel formation times in each division of crown height, for all anterior tooth types combined. The distributions of these estimates of time taken to form each division of crown height follow the same trends as the actual perikymata counts and differ between taxa in the same basic way. The distinction between modern African great apes and fossil hominins is particularly clear. Finally, we calculated crown formation times for each anterior tooth type by summing cuspal and lateral enamel formation times. Estimates of average crown formation times in australopiths are shorter than those calculated for both modern human and African great ape anterior teeth. The data presented here provide a better basis for exploring differences in perikymata spacing and distribution among fossil hominins, and provide the first opportunity to describe four specimens attributed to Homo in this context. Preliminary data indicate that differences may exist among the species attributed to early Homo, especially between Homo ergaster and Homo rudolfensis on the one hand, and Homo habilis sensu strico on the other. Am J Phys Anthropol 116:209–215, 2001. © 2001 Wiley-Liss, Inc.