SEARCH

SEARCH BY CITATION

Literature Cited

  • Abendschein, W., and G.W. Hyatt (1970) Ultrasonics and selected physical properties of bone. Clin. Orthop., 69: 294301.
  • Amprino, R. (1952) Rapporti fra processi di ricostrazione e distribuzione dei minerali nella ossa. Z. Zellforsch., 37: 144183.
  • Amtmann, E. (1968) The distribution of breaking strength in the human femur shaft. J. Biomech., 1: 271277.
  • Amtmann, E. (1971) Mechanical stress, functional adaptation and the variation structure of the human femur diaphysis. Ergeb. der Anat. und Entwickl., 44, Springer-Verlag, Berlin.
  • Amtmann, E. (1974) An effect of gravity on the postnatal development of the human and rat femur. Z. Anat. Entwickl.-Gesch., 143: 159183.
  • Amtmann, E. (1978) Experimentelle Analyse des Knochenquerschnittswachstums. Verh. Anat. Ges. (in press).
  • Amtmann, E., T. Kimura, J. Oyama, E. Doden, and M. Potulski (1979) Maximum likelihood factor analysis of the effects of chronic centrifugation on the structural development of the musculoskeletal system of the rat. Anat. Embryol., 156: 89101.
  • Amtmann, E., and J. Oyama (1973) Changes in functional construction of bone in rats under conditions of simulated increased gravity. Z. Anat. Entwickl.-Gesch., 139: 307318.
  • Amtmann, E., and J. Oyama (1976) Effect of chronic centrifugation on the structural development of the musculoskeletal system of the rat. Anat. Embryol., 149: 4770.
  • Amtmann, E., and H.P. Schmitt (1968) Über die Verteilung der Corticalisdichte im menschlichen Femurschaft und ihre Bedeutung fur die Bestimmung der Knochenfestigkeit. Z. Anat. Entwickl., 127: 2541.
  • Ascenzi, A., and E. Bonucci (1964) The ultimate tensile strength of single osteons. Acta Anat. (Basel), 58: 160183.
  • Ascenzi, A. and E. Bonucci (1968) The compressive properties of single osteons. Anat. Rec., 161: 377392.
  • Ascenzi, A., E. Bonucci, and A. Checcucci (1966) The tensile properties of single osteons studied using a microwave extensimeter. In: Studies on the Anatomy and Function of Bone and Joints. F.G. Evans, ed. Springer-Verlag, Berlin, pp. 121141.
  • Ascenzi, A., and C. Fabry (1959) Technique for dissection and measurement of refractive index of osteones. J. Biophys. Biochem. Cytol., 6: 139143.
  • Atkinson, P.S., and J.A. Weatherell (1967) Variations in the density of the femoral diaphysis with age. J. Bone Joint Surg., 49B: 781788.
  • Atkinson, P.S., J.A. Weatherell, and S.M. Weidmann (1962) Changes in density of the human femoral cortex with age. J. Bone Joint Surg., 44B: 496502.
  • Backman, S. (1957) The proximal end of the femur. Acta Radiol. Suppl., 146: 1166.
  • Bartley, M.H. Jr., J.S. Arnold, R.K. Haslam, and W.S.S. Jee (1966) The relationship of bone strength and bone quantity in health, disease and aging. J. Gerontol., 21: 517521.
  • Bassett, C.A.L. (1968) Biologic significance of piezoelectricity. Calcif. Tiss. Res., 1: 252272.
  • Bassett, C.A.L. (1971) Biophysical principles affecting bone structure. In: The Biochemistry and Physiology of Bone. G.H. Bourne, ed. Academic Press, New York. pp. 176.
  • Bauer, G.C.H. (1960) Epidemiology of fracture in aged persons. A preliminary investigation in fracture etiology. Clin. Orthop., 17: 219225.
  • Beddoe, A.H. (1978) A quantitative study of the structure of trabecular bone in man, rhesus monkey, beagle and miniature pig. Calcif. Tiss. Res., 25: 273281.
  • Behrens, J.C., P.S. Walker, and H. Shoki (1974) Variations in strength and structure of cancellous bone at the knee. J. Biomech., 7: 201207.
  • Bell, G.H., O. Dunbar, and J.S. Beck (1967) Variations in the strength of vertebrae with age and their relation to osteoporosis. Calcif. Tiss. Res., 1: 7586.
  • Benninghoff, A. (1925) Spaltlinen am Knochen, eine Method zur Ermittlungen der Architektur platter Knochen. Verh. Anat. Gesel. Suppl., Anat. Anz., 60: 189206.
  • Biltz, R.M., and E.D. Pellegrino (1969) The chemical anatomy of bone. I. A comparative study of bone composition in sixteen vertebrates. J. Bone Joint Surg., 51A: 456466.
  • Black, J., R. Mattson, and E. Korostoff (1974) Haversian osteons: size, distribution, internal structure and orientation. J. Biomed. Mater. Res., 8: 299320.
  • Bonfield, W., and E.A. Clark (1973) Elastic deformation of compact bone. J. Mater. Sci., 8: 15901594.
  • Buhr, A.J., and A.M. Cooke (1959) Fracture patterns. Lancet, 276: 531536.
  • Burr, D.B. (1979a) Patterns of variability in mineralization of the primate femoral diaphysis. Am. J. Phys. Anthropol., 51: 219232.
  • Burr, D.B. (1979b) Density variation in the humeral cortex of Macaca. Am. J. Anat., 155: 311318.
  • Burr, D.B. (1979c) Percentage ash content of nonhuman primate long limb bones. Am. J. Phys. Anthropol., 51: 361364.
  • Burstein, A.H., D.T. Reilly, and M. Martens (1976) Aging of bone tissue: Mechanical properties. J. Bone Joint Surg., 58A: 8186.
  • Burstein, A.H., J.M. Zika, K.G. Heiple, and L. Klein (1975) Contribution of collagen and mineral to the elastic-plastic properties of bone. J. Bone Joint Surg., 57A: 956961.
  • Carlson, D.S., G.J. Armelagos, and D.P. Van Gerven (1976) Patterns of age-related cortical bone loss (osteoporosis) within the femoral diaphysis. Hum. Biol., 48: 295314.
  • Carter, D.R., and W.C. Hayes (1974) Fatigue fracture of bone—temperature dependence. IRCS Med. Sci., 2: 1626.
  • Carter, D.R., and W.C. Hayes (1976) Fatigue life of compact bone—I. Effects of stress amplitude, temperature and density. J. Biomech., 9: 2734.
  • Carter, D.R., and W.C. Hayes (1977) The compressive behavior of bone as a two phase porous structure. J. Bone Joint Surg., 59: 954962.
  • Carter, D.R., W.C. Hayes, and D.J. Schurman (1976) Fatigue life of compact bone—II. Effects of microstructure and density. J. Biomech., 9: 211218.
  • Carter, D.R., and D.M. Spengler (1978) Mechanical properties and composition of cortical bone, Clin. Orthop., 135: 192217.
  • Charnley, J. (1965) Biomechanics in orthopaedic surgery. In: Biomechanics and Related Bio-engineering Topics. R.M. Kenedi, ed., Pergamon Press, Oxford, pp. 99110.
  • Chatterji, S., J.C. Wall, and J.W. Jeffery (1972) Changes in the degree of orientation of bone materials with age in the human femur. Experientia (Basel), 28: 156157.
  • Currey, J.D. (1959) Differences in the tensile strength of bone of different histological types. J. Anat., 93: 8795.
  • Currey, J.D. (1962) Stress concentrations in bone. Q. J. Microscop. Sci., 103: 111133.
  • Currey, J.D. (1969) The mechanical consequences of variation in the mineral content of bone. J. Biomech., 2: 111.
  • Currey, J.D. (1975) The effects of strain rate, reconstruction and mineral content on some mechanical properties of bone. J. Biomech., 8: 8186.
  • Currey, J.D. (1979a) Changes in the impact energy absorption of bone with age. J. Biomech., 12: 459469.
  • Currey, J.D. (1979b) Mechanical properties of bone tissues with greatly differing functions. J. Biomech., 12: 313319.
  • Currey, J.D., and G. Butler (1975) The mechanical properties of bone tissue in children. J. Bone Joint Surg., 57A: 810814.
  • Dalén, N., L.-G. Hellstrom and B. Jacobson (1976) Bone mineral content and mechanical strength of the femoral neck. Acta Orthop. Scand., 47: 503508.
  • Dally, J.W., and W.F. Riley (1965) Experimental Stress Analysis. McGraw-Hill, New York.
  • Dequeker, J. (1975) Bone and aging. Ann. Rheum. Dis., 34: 100115.
  • Dove, R.C., and P.H. Adams (1964) Experimental Stress Analysis and Motion Measurement. Merrill, Columbus.
  • Ducheyne, P., L. Heymans, M. Martens, E. Aernoudt, P. de Meester, and J.C. Mulier (1977) The mechanical behavior of intracondylar cancellous bone of the femur at different loading rates. J. Biomech., 10: 747762.
  • Eastoe, J.E. (1956) The Organic Matrix of Bone. In: The Biochemistry and Physiology of Bone, G. H. Bourne, ed., Academic Press, New York, pp. 81105.
  • Endo, B., and T. Kimura (1970) Postcranial skeleton of the Amud man. In: The Amud Man and His Cave Site. J. Suzuki and F. Takai eds., Academic Press of Japan, Tokyo, pp. 231406.
  • Evans, F.G. (1957) Stress and Strain in Bones. Their Relation to Fractures and Osteogenesis. Charles C. Thomas, Springfield.
  • Evans, F.G. (1958) Relations between microscopic structure and tensile strength of human bone. Acta. Anat. (Basel), 35: 285301.
  • Evans, F.G. (1962) Stress and strain of posture, expressed in the construction of man's weight-bearing skeletal structures. Clin. Orthop., 25: 4254.
  • Evans, F.G. (1967) Bibliography of the physical properties of the skeletal system. Artif. Limbs, 11: 4866.
  • Evans, F.G. (1969) Relation of collagen fiber orientation to some mechanical properties of human cortical bone. J. Biomech., 2: 6371.
  • Evans, F.G. (1973) Mechanical Properties of Bone. Charles C Thomas, Springfield.
  • Evans, F.G. (1976) Mechanical properties and histology of cortical bone from younger and older men. Anat. Rec., 185: 112.
  • Evans, F.G. (1977) Age changes in mechanical properties and histology of human compact bone. Yrbk. Phys. Anthropol., 20: 5772.
  • Evans, F.G. (1978) Relations between torsion properties and histology of adult human compact bone. J. Biomech., 11: 157165.
  • Evans, F.G., and S. Bang (1966) Physical and histological differences between human fibular and femoral compact bone. In: Studies on the Anatomy and Function of Bone and Joints. F. G. Evans ed., Springer-Verlag, Heidelberg, pp. 142155.
  • Evans, F.G., and S. Bang (1967) Differences and relationships between the physical properties and the microscopic structure of human femoral, tibial and fibular cortical bone. Am. J. Anat., 120: 7988.
  • Evans, F.G., and C.W. Goff (1957) A comparative study of the primate femur by means of the stresscoat and the split-line techniques. Am. J. Phys. Anthropol., 15: 5989.
  • Evans, F.G., and M.L. Riolo (1970) Relations between the fatigue life and histology of adult human cortical bone. J. Bone Joint Surg., 52A: 15791586.
  • Evans, F.G., and R. Vincentelli (1969) Relation of collagen fibre orientation to some mechanical properties of human cortical bone. J. Biomech., 2: 6371.
  • Evans, F.G., and R. Vincentelli (1974) Relations of the compressive properties of human cortical bone to histological structure and calcification. J. Biomech., 7: 110.
  • Frost, H.M. (1963) Bone Remodelling Dynamics. Charles C. Thomas, Springfield.
  • Frost, H.M. (1964) The Laws of Bone Structure. Charles C. Thomas, Springfield.
  • Galante, J., W. Rostoker, and R.D. Ray (1970) Physical properties of trabecular bone. Calcif. Tiss Res., 5: 236246.
  • Garn, S. M. (1970) The Earlier Gain and Later Loss of Cortical Bone in Nutritional Perspective. Charles C. Thomas, Springfield.
  • Garn, S.M. (1973) Adult bone loss, fracture epidemiology and nutritional implications. Nutrition, 27: 107115.
  • Genant, H.K., and D. Boyd (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest. Radiol., 12: 545551.
  • Gilmore, R.S., and J.L. Katz (1968) Elastic properties of apatites. Int. Symp. Structural Properties of Hydroxyapatite and Related Compounds. National Bureau of Standards, Washington, D.C., Unpublished manuscript.
  • Gjelsvik, A. (1973a) Bone remodeling and piezoelectricity—I. J. Biomech., 6: 6977.
  • Gjelsvik, A. (1973b) Bone remodeling and piezoelectricity—II. J. Biomech., 6: 187193.
  • Gong, J.K. (1972) Volumetric composition of the monkey skeleton. Anat. Rec., 172: 543549.
  • Gong, J.K., J.S. Arnold, and S.H. Cohn (1964) Composition of trabecular and cortical bone. Anat Rec., 149: 325331.
  • Goodbread, J.H. (1976) Mechanical Properties of Spongy Bone at Low Ultrasonic Frequencies. Ph.D. dissertation submitted to the Swiss Federal Institute of Technology, Zurich.
  • Goodship, A.E., L.E. Lanyon, and H. McFie (1979) Functional adaptation of bone to increased stress. J. Bone Joint Surg., 61A: 539546.
  • Harkness, R.D. (1968) Mechanical properties of collagenous tissues. In: Treatise on Collagen, 11A, Biology on Collagen. B. S. Gould ed., Academic Press, London, pp. 248310.
  • Hayes, W.C. (1978) Biomechanical measurements of bone. In: CRC Handbook of Engineering in Medicine and Biology, Section B, Instruments and Measurements, Vol. 1. B. Feinberg and D. G. Fleming, eds., CRC Press, Cleveland, pp. 333372.
  • Heřt, J., P. Kučera, M. Vávra, and V. Voleník (1965) Comparison of the mechanical properties of both the primary and Haversian bone tissue. Acta Anat., 61: 412423.
  • Heřt, J., M. Lišková, and B. Landrgot (1969) Influence of the long-term, continuous bending on the bone. Folia Morphol., (Prague), 17: 389399.
  • Heřt, J., E. Pribylova, and M. Lišková (1972) Reaction of bone to mechanical stimuli. Part 3: Microstructure of compact bone of rabbit tibia after intermittent loading. Acta Anat., 82: 218230.
  • Hetényi, M. (1950) Handbook of Experimental Stress Analysis. John Wiley and Sons, Inc., New York.
  • Holister, G.S. (1967) Experimental Stress Analysis. University Press, Cambridge.
  • Ilberg, A. (1935) Ueber die funktionelle Architektur der Nasenknorpel und ihrer Knöchernen umgebung beim Menschen. Z. Laryngol. Rhinol. Otol., 26: 239257.
  • Jaekel, E., E. Amtmann, and J. Oyama (1977) Effect of chronic centrifugation on bone density of the rat. Anat. Embryol., 151: 223232.
  • Jankovich, J.P. (1971) Structural Development of Bone in the Rat under Earth Gravity, Simulated Weightlessness, Hypergravity, and Mechanical Vibration. NASA Contractor Report 1823, Natl. Tech. Inf. Serv., Springfield, Va.
  • Jowsey, J. (1960) Age changes in human bone. Clin. Orthop., 17: 210217.
  • Jowsey, J. (1964) Variations in bone mineralization with age and disease. In: Bone Biodynamics. H. M. Frost, ed. Little, Brown, and Co., Boston, pp. 461479.
  • Jowsey, J. (1966) Studies of Haversian systems in man and some animals. J. Anat., 100: 857864.
  • Jowsey, J. (1968) Age and species differences in bone. Cornell Vet., 58: 7494.
  • Jowsey, J., J.H. Marshall, and R.E. Rowland (1958) Variations in Haversian system sizes. Argonne Nat. Lab. Radiol. Phys. Div. Semiannual Report ANL-5755, July 1957, pp. 9394.
  • Jungers, W. L. (1977) Hindlimb adaptations to vertical climbing and clinging in Megaladapis, a giant subfossil prosimian from Madagascar. Yrbk. Phys. Anthropol., 20: 508524.
  • Jungers, W.L., and R.J. Minns (1979) Computed tomography and biomechanical analysis of fossil long bones. Am. J. Phys. Anthopol., 50: 285290.
  • Jurist, J.M., and A.S. Foltz (1977) Human ulnar bending stiffness, mineral content, geometry and strength. J. Biomech., 10: 455459.
  • Katz, J.L. (1971) Hard tissue as a composite material—I. Bounds on the elastic behavior. J. Biomech., 4: 455473.
  • Kazarian, L.E., and H.E. von Gierke (1969) Bone loss as a result of immobilization and chelation. Preliminary results in Macaca mulatta.. Clin. Orthop., 65: 6775.
  • Keil, L.C. (1973) The Effect of Chronic Exposure to Hypergravity on Bone Development and Calcium Metabolism in the Rat. Unpublished Ph.D. dissertation, University of California, Davis.
  • Kenner, G.H., L.C. Taylor, and J.B. Park (1979) Compressive strength of canine femur. J. Biomech., 12: 519526.
  • Kimura, T. (1971) Cross-section of human lower leg bones viewed from strength of materials. J. Anthropol. Soc. Nippon, 79: 323336.
  • Kimura, T., E. Amtmann, E. Doden, and J. Oyama (1979) Compressive strength of the rat femur as influenced by hypergravity. J. Biomech., 12: 361365.
  • Knese, K-H., I. Ritschl, and D. Voges (1954) Quantitative Untersuchung der Osteonverteilung im Extremitätenskelett eines 43Jährigen Mannes. Z. Zellforsch., 40: 519570.
  • Knese, K-H., and S. Titschak (1962) Untersuchungen mit Hilfe des Lochkartenverfahrens über die Osteonstrukturen von Haus-und Wildschweinknochen sowie Bemerkungen zur Baugeschichte des Knochengewebes. Morphol. Jahrb., 102: 337458.
  • Knief, J-J, (1967a) Quantitative Untersuchungen der Verteilung der Hartsubstanzen im Knochen in ihrer Beziehung zur lokalen mechanischen Beanspruchung. Z. Anat. Entwickl.-Gesch., 126: 5580.
  • Knief, J-J. (1967b) Materialverteilung und Beanspruchungsverteilung im coxalen Femurende. Densitometrische und spannungsoptische Untersuchungen. Z. Anat. Entwickl.-Gesch., 126: 81116.
  • Knowelden, J., A.J. Buhr, and O. Dunbar (1964) The incidence of fractures in persons over thirty-five years of age. A report to the Medical Research Council working party on fractures in the elderly. Her Majesty's Stationery Office, London.
  • Koch, J.C. (1917) The laws of bone architecture. Am. J. Anat., 21: 177298.
  • Konermann, H. (1970) Dichteverteilung im Röntgenbild des Skeletts. Die Naturwiss., 57: 255.
  • Konermann, H. (1971) Funktionelle Analyse der Knorpelstruktur des Talonaviculargelenks. Z. Anat. Entwickl.-Gesch., 133: 136.
  • Kummer, B. (1972) Biomechanics of bone: Mechanical properties, functional structure, functional adaptation. In: Biomechanics: Its Foundations and Objectives. Y. C. Fung, N. Perrone, and M. Anliker eds. Prentice-Hall, Englewood Cliffs, pp. 237272.
  • Kummer, B. (1973) Bone remodeling as a function of mechanical stress. Poseban Otisak iz Knijige, 366: 520.
  • Lakes, R., and S. Saha (1979) Cement line motion in bone. Science, 204: 501503.
  • Lanyon, L.E. (1973) Analysis of surface bone strain in the calcaneus of sheep during normal locomotion. J. Biomech., 6: 4149.
  • Lanyon, L.E. (1974) Experimental support for the trajectorial theory of bone structure. J. Bone Joint Surg., 56B: 160166.
  • Lanyon, L.E., and D.G. Baggot (1976) Mechanical function as an influence on the structure and form of bone. J. Bone Joint Surg., 58B: 436443.
  • Lanyon, L.E., and S. Bourn (1979) The influence of mechanical function on the development and remodeling of the tibia. J. Bone Joint Surg., 61A: 263273.
  • Lanyon, L.E., W.G.J. Hampson, A.E. Goodship, and J.S. Shah (1975) Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthop. Scand., 46: 256268.
  • Lišková, M. (1965) The thickness changes of the long bone after experimental stressing during growth. 1st report. (Czech.). Plzen. 1ek. Shorn., 25: 95104.
  • Lišková, M., and J. Heřt (1971) Reaction of bone to mechanical stimuli. Part 2: Periosteal and endosteal reaction of tibial diaphysis in rabbit to intermittent loading. Folia Morphol., 19: 301317.
  • Lovejoy, C.O., and A.H. Burstein (1977) Geometrical properties of bone sections determined by laminagraphy and physical section. J. Biomech., 10: 527528.
  • Lovejoy, C.O., A.H. Burstein, and K.G. Heiple (1976) The biomechanical analysis of bone strength: A method and its application to platycnemia. Am. J. Phys. Anthropol., 44: 489506.
  • Lovejoy, C.O., and E. Trinkaus (n.d.) Strength and robusticity of the Neandertal tibia. Unpublished manuscript.
  • McElhaney, J.H., J.L. Fogle, J. Melvin, R.R. Haynes, V.L. Roberts, and N.M. Alem (1970) Mechanical properties of cranial bone. J. Biomech., 3: 495511.
  • Maj, G., and E. Toajari (1937) Osservazioni sperimentali sul meccanismo di resistenza del tessuto osseo lamellare compatto alle azioni meccaniche. Chir. Organi. Mov., 22: 541557.
  • Martin, R.B. (1972) The effects of geometric feedback in the development of osteoporosis. J. Biomech., 5: 447455.
  • Martin, R.B., and P.J. Atkinson (1977) Age and sex-related changes in the structure and strength of the human femoral shaft. J. Biomech., 10: 223231.
  • Martin, R.B., and J.C. Pickett (1980) Studies of skeletal remodelling in aging men. Clin Orthop., 149: 268282.
  • Mather, B.S. (1968) The effect of variation in specific gravity and ash content on the mechanical properties of human compact bone. J. Biomech., 1: 207210.
  • Mazess, R.B. (1973) Proceedings of the International Conference on Bone Mineral Measurement, Chicago. DHEW Pub. No. (NIH) 75683.
  • Melick, R.A., and D.R. Miller (1966) Variations of tensile strength of human cortical bone with age. Clin. Sci., 30: 243248.
  • Messerer, O. (1880) Uber Elasticität und Festigkeit der menschlichen Knochen. Verlage der J. G. Cott'schen Buchhandlung, Stuttgart.
  • Miller, G.J., and G. Piotrowski (1974) A note on the variability of the torsional strength of paired bones. J. Biomech., 7: 247248.
  • Miller, G.J., and G. Piotrowski (1977) Geometric properties of paired human femurs. Paper presented to the American Society of Mechanical Enineers, Atlanta.
  • Minns, R.J., G.R. Bremble, and J. Campbell (1975) The geometrical properties of the human tibia. J. Biomech., 8: 253255.
  • Minns, R.J., G.R. Bremble, and J. Campbell (1977) A biomechanical study of internal fixation of the tibial shaft. J. Biomech., 10: 569579.
  • Moon, F.C., and R.A. Gatenby (1972) The variation of the mechanical properties in the walls of long bones. Trans. 25th annual meeting of the ACEMB, Bel Harbour, Fla., Oct., 1972.
  • Mueller, K.H., A. Trias, and R.D. Ray (1966) Bone density and composition. Age-related and pathological changes in water and mineral content. J. Bone Joint Surg., 48A: 140148.
  • Nilsson, E.R., and R.E. Smith (1969) The influence on breaking force of osteoporosis following fracture of the tibial shaft in rats. Acta Orthop. Scand., 40: 7278.
  • Nokso-Koivisto, V.M., E.M. Alhava, and H. Olkkonen (1976) Measurement of cancellous bone strength correlations with mineral density, aging and disease. Ann. Clin. Res., 8: 399402.
  • Okamoto, T. (1955) Mechanical significance of components of bone tissue. J. Kyoto Pref. Med. Univ., 58: 10041006.
  • Oyama, J., and B. Zeitman (1967) Tissue composition of rats exposed to chronic centrifugation. Am. J. Physiol., 213: 13051310.
  • Pauwels, F. (1965) Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungsapparates. Springer-Verlag, Berlin.
  • Pauwels, F. (1968) Beitrag zur funktionellen Anpassung der Corticalis der Röhrenknochen. Untersuchungen an drei rachitisch deformierten Femora. 12. Beitrag zur funktionellen Anatomie und kausalen Morphologie des Stützapparates. Z. Anat. Entwickl.-Gesch., 127: 121137.
  • Peterson, K.R. (1977) Non-invasive Determination of Bone Stiffness. Ph.D. dissertation, Department of Mechanical Engineering, Stanford.
  • Piotrowski, G., W.C. Allen, K.B. Hall, and G. Miller (1973) Evaluation of bioglass-ceramic segemental (sic) bone replacements in primate femora. In: An Investigation of Bonding Mechanisms at the Interface of a Prosthetic Material, L. L. Hench, H. A. Paschall, W. C. Allen, and G. Piotrowski, eds., Report 4, U.S. Army Research and Development Command, Contract No. 17-70-C-0001. University of Florida, Gainesville, pp. 7083.
  • Piotrowski, G., and G.I. Kellman (1973) A stress calculator for arbitrarily drawn sections—The S.C.A.D.S. computer program. In: An Investigation of Bonding Mechanisms at the Interface of a Prosthetic Material, L. L. Hench, H.A. Paschall, W.C. Allen, and G. Piotrowski, eds., Report 4, U.S. Army Research and Development Command, Contract No. 17-70-C-0001, University of Florida, Gainesville, pp. 96122.
  • Piotrowski, G., and G.I. Kellman (1978) A stress calculator for arbitrarily drawn sections—the S.C.A.D.S. computer programme. In: Orthopaedic Mechanics. D. Ghista and R. Roaf, eds., Academic Press, New York, pp. 317340.
  • Piotrowski, G., and G.A. Wilcox (1971) The STRESS program: a computer program for analysis of stresses in long bones. J. Biomech., 4: 497506.
  • Piziali, R.L., T.K. Hight, and D.A. Nagel (1976) An extended structural analysis of long bones—application to the human tibia. J. Biomech., 9: 695701.
  • Posner, I., and H.J. Griffiths (1977) Comparison of CT scanning with photon absorptiometric measurement of bone mineral content in the appendicular skeleton. Invest. Radiol., 12: 542544.
  • Pugh, J.W., R.M. Rose, and E.L. Radin (1973a) Elastic and viscoelastic properties of trabecular bone: Dependence on structure. J. Biomech., 6: 475485.
  • Pugh, J.W., R.M. Rose, and E.L. Radin (1973b) A structural model for the mechanical behavior of trabecular bone. J. Biomech., 6: 657670.
  • Radin, E.L., H.G. Parker, J.W. Pugh, R.S. Steinberg, I.L. Paul, and R.M. Rose (1973) Response of joints to impact loading—III. Relationship between trabecular microfractures and cartilage degeneration. J. Biomech., 6: 5157.
  • Radin, E.L., I.L. Paul, and M.J. Tolkoff (1970) Subchondral bone changes in patients with early degenerative joint disease. Arth. Rheum., 13: 400405.
  • Ramaekers, J.G. (1977) The dynamic shear modulus of bone in dependence on the form. Acta Morphol. Neerl.-Scand., 15: 185201.
  • Reilly, D.T., and A.H. Burstein (1974) The mechanical properties of cortical bone. J. Bone Joint Surg., 56A: 10011022.
  • Rockoff, S.D., E. Sweet, and J. Bleustein (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif. Tiss. Res., 3: 163175.
  • Romanus, B. (1974) Physical properties and chemical content of canine femoral cortical bone in nutritional osteopenia. Acta Orthop. Scand., Suppl. 155.
  • Rowland, R. E., J. Jowsey, and J.H. Marshall (1958) Mass per unit volume of bone mineral. Argonne Natl. Lab. Radiol. Physics Div. Semiannual Report ANL-5755, July 1957, pp. 7778.
  • Rowland, R.E. (1959) Microscopic metabolism of calcium in bone. III. Microradiographic measurements in mineral density. Radiat. Res., 10: 234242.
  • Ruegsegger, P., U. Elsass, M. Anliker, H. Gnehm, H. Kind, and A. Prader (1976) Quantification of bone mineralization using computed tomography. Radiology, 121: 9397.
  • Ruegsegger, P., P. Niederer, and M. Anliker (1974) An extension of classical bone mineral measurements. Ann. Biomed. Eng., 2: 194205.
  • Rybicki, E.F., F.A. Simonen, and E.B. Weis, Jr. (1972) On the mathematical analysis of stress in the human femur. J. Biomech., 5: 203215.
  • Saha, S., and W.C. Hayes (1977) Relations between tensile impact properties and microstructure of compact bone. Calcif. Tiss. Res., 24: 6572.
  • Saville, P.D., and C.S. Lieber (1965) Effect of alcohol on growth, bone density and muscle magnesium in the rat. J. Nutr., 67: 477484.
  • Saville, P.D., and B.E.R. Nilsson (1966) Height and weight in symptomatic postmenopausal osteoporosis. Clin. Orthop., 45: 4954.
  • Saville, P.D., and R. Smith (1966) Bone density, breaking force and leg muscle mass as functions of weight in bipedal rats. Am. J. Phys. Anthropol., 25: 3539.
  • Schoenfeld, C.M., E.P. Lautenschlager, and P.R. Meyer, Jr. (1974) Mechanical properties of human cancellous bone in the femoral head. Med. Biol. Eng., 12: 313317.
  • Smith, A.H., and C.F. Kelly (1963) Influence of chronic acceleration upon growth and body composition. Ann. N.Y. Acad. Sci., 110: 410424.
  • Smith, J.W., and R. Walmsley (1959) Factors affecting the elasticity of bone. J. Anat., 93: 503523.
  • Smith, R.W., Jr., and R.R. Walker (1964) Femoral expansion in aging women: Implications for osteoporosis and fractures. Science, 145: 156157.
  • Swanson, S.A.V. (1971) Biomechanical characteristics of bone. In: Advances in Biomedical Engineering. R. M. Kenedi, ed., Academic Press, London; pp. 137187.
  • Swanson, S.A.V., M.A.R. Freeman, and W.H. Day (1971) The fatigue properties of human cortical bone. Med. Biol. Eng., 9: 2332.
  • Tappan, N.C. (1976) Advanced weathering cracks as an improvement on split-line preparations for analysis of structural orientation in compact bone. Am. J. Phys. Anthropol., 44: 375379.
  • Tarach, J., and M. Czaja (1973) Statistical analysis of some size parameters of Haversian systems in femoral, ground transverse sections in man and animals. Ann. Univ. Mariae Curie Sklodowska, 28: 99105.
  • Toridis, T.B. (1969) Stress analysis of the femur. J. Biomech., 2: 163174.
  • Townsend, P.R., P. Raux, R.M. Rose, R.E. Miegel, and E.L. Radin (1975) The distribution and anisotropy of the stiffness of cancellous bone in the human patella. J. Biomech., 8: 363367.
  • Trotter, M., and B.B. Hixon (1974) Sequential changes in weight, density and percentage ash weight of human skeletons from an early fetal period through old age. Anat. Rec., 179: 118.
  • Trotter, M., and B.B. Hixon (1976) The density of long limb bones and the percentage ash weight of the skeleton of Macaca mulatta. Am. J. Phys. Anthropol., 44: 223232.
  • Valliappan, S., N.L. Svensson, and R.D. Wood (1977) Three dimensional stress analysis of the human femur. Comp. Biol. Med., 7: 253264.
  • Van Gerven, D.P. (1973) Thickness and area measurements as parameters of skeletal involution of the humerus, femur and tibia. J. Gerontol., 28: 4045.
  • Viano, D., U. Helfenstein, M. Anliker, and P. Ruegsegger (1976) Elastic properties of cortical bone in female human femurs. J. Biomech., 9: 703710.
  • Vincentelli, R., and F.G. Evans (1971) Relations among mechanical properties, collagen fibers and calcification in adult human cortical bone. J. Biomech., 4: 193201.
  • Vinz, H. (1970a) Die Änderung der Festigkeitseigenschaften des kompakten Knochengewebes im Laufe der Altersentwicklung. Morphol. Jb., 115: 257272.
  • Vinz, H. (1970b) Untersuchungen über die Dichte, den Wasser-und den Mineralgehalt des kompakten menschlichen Knochengewebes in Abhängigkeit vom Alter. Morphol. Jb., 115: 273283.
  • Vose, G.P. (1962) The relation of microscopic mineralization to intrinsic bone strength. Anat. Rec., 144: 3136.
  • Vose, G.P., and A.L. Kubala (1959) Bone strength—its relationship to X-ray determined ash content. Hum. Biol., 31: 261270.
  • Vose, G.P., and P.B. Mack (1963) Roentgenologic assessment of femoral neck density as related to fracturing. Am. J. Roentgenol., 89: 12961301.
  • Vose, G.P., and T.L. Roach (1972) Ash content of bones in the pigtail monkey, Macaca nemestrina. Aerospace Med., 43: 291292.
  • Vose, G.P., B.J. Stover, and P.B. Mack (1961) Quantitative bone strength measurements in senile osteoporosis. J. Gerontol., 16: 120124.
  • Wainwright, S.A., W.D. Biggs, J.D. Currey, and J.M. Gosline (1976) Mechanical Design in Organisms. Halsted Press, New York.
  • Wall, J.C., S. Chatterji, and J.W. Jeffery (1970) On the origin of scatter in results of human bone strength tests. Med. Biol. Eng., 8: 171180.
  • Wall, J.C., S. Chatterji, and J.W. Jeffery (1972) Human femoral cortical bone: a preliminary report on the relationship between strength and density. Med. Biol. Eng., 10: 673676.
  • Wall, J.C., S. Chatterji, and J.W. Jeffery (1979) Age related changes in the density and tensile strength of human femoral cortical bone. Calcif. Tiss. Int., 27: 105108.
  • Weaver, J.K., and J. Chalmers (1966) Cancellous bone: Its strength and changes with aging and an evaluation of some methods for measuring its mineral content. I. Age changes in cancellous bone. J. Bone Joint Surg., 48A: 289299.
  • Welborn, J.W.III (1975) Fracture Toughness of Canine Femoral Bone. M.Sc. thesis, Clemson University, Clemson, S.C.
  • Wilson, C.R. (1973) Prediction of femoral neck and spine bone mineral content from the BMC of the radius or ulna and the relationship between bone strength and BMC. In: Proceedings of the International Conference on Bone Mineral Measurements. R. B. Mazess ed., DHEW Pub. No. (NIH) 75-683 Chicago, pp. 5159.
  • Wilson, C.R. (1977) Bone-mineral content of the femoral neck and spine versus the radius or ulna. J. Bone Joint Surg., 59A: 665669.
  • Wright, T.M., and W.C. Hayes (1976) Tensile testing of bone over a wide range of strain rates: Effects of strain rate, microstructure and density. Med. Biol. Eng., 14: 671680.
  • Wright, T.M., and W.C. Hayes (1977) Fracture mechanics parameters for compact bone—Effects of density and specimen thickness. J. Biomech., 10: 419430.
  • Wunder, C.C., S.R. Briney, M. Karl, and C. Skaugstad (1960) Growth of mouse femurs during continual centrifugation. Nature, 188: 151152.
  • Yamada, H. (1970) Strength of Biological Materials. F. G. Evans, ed., Williams and Wilkins Co., Baltimore.
  • Yoshikawa, K., M. Maeda, and K. Takezono (1963) The mechanical anisotropy in compression of the shaft in several animal bones. J. Kyoto Pref. Med. Univ., 72: 99106.
  • Young, D.R., W.H. Howard, C. Cann, and C.R. Steele (1979) Noninvasive measure of bone bending rigidity in the monkey ( M. nemestrina.) Calcif. Tiss. Int., 27: 109115.