Functional assessment of subfamily variation in maxillomandibular morphology among old World monkeys

Authors

  • Dr. Matthew J. Ravosa

    Corresponding author
    1. Department of Anthropology, Northwestern University, Evanston, Illinois 60208
    • Dept. Biological Anthropology and Anatomy, Duke University Medical Center, Box 3170, Durham, NC 27710
    Search for more papers by this author

Abstract

Among Old World monkeys, subfamily variation in maxillomandibular form is commonly attributed to divergent dietary and social behaviors. However, our knowledge of any musculoskeletal adaptations for gape in cercopithecines, and folivory in colobines, is incomplete. Such data are requisite to a more informed perspective on the evolutionary morphology of these taxa.

Structural analyses of gape and biomechanical efficiency were applied to a representative sample of adult cercopithecids. Factors pertaining to the biomechanical scaling of cranial structures were evaluated with least-squares bivariate regression techniques. To assess subfamily differences in masticatory efficiency, analyses of covariance were made between relevant factors.

Cercopithecines achieve increased gape and relative canine size mainly with strong positive allometry of the facial skull, combined with a larger gonial angle. Colobines possess a relatively long masseter lever arm and short facial skull, as well as an enlargened masseter-medial pterygoid complex. Subfamily differences in temporalis lever arm scaling are negligible.

Biomechanical comparisons within and between subfamilies suggest that the mechanical advantage of the temporalis is relatively greater than that of the masseter, while the mechanical advantage of both muscles increases with face length. Evidence is presented to stress the need for adequate consideration of the dependent variable in allometric investigations of skull form.

Ancillary