• Masticatory muscles;
  • Craniofacial growth;
  • Bite force


The masticatory muscles in 132 anesthetized male and female rhesus monkeys ranging in age from juvenile to adult were unilaterally stimulated. Muscle forces and speeds were measured with a bite force transducer positioned at the incisors, premolars, and molars during twitch and tetanic contractions. Lateral cephalographs of all animals were used to estimate the orientation and mechanical advantage of the masticatory muscles. Results showed that maximal occlusal forces increased at a greater rate than body weight during growth. However, maximal occlusal forces increased isometrically relative to mandibular length. Mean forces at the incisors ranged from 70.3 newtons (n) in juveniles up to 139.9 n in adult males. Forces at the molars were 2–2.5 times greater than at the incisors. Time-to-peak tension decreased with increasing body size from 44.1 msec in juveniles to 37.4 msec in adult females to 31.0 msec in adult males. Regression analysis showed that adult males have faster muscles than adult females or juveniles even when corrected for body size. Temporalis and masseter orientation was found to change little throughout growth. The mechanical advantage of the masseter and temporalis muscles for producing occlusal forces on the distal molars improved between juveniles and adults, which is contrary to findings of Oyen et al. (Growth 43:174–187, 1979). Among adults, females had a greater mechanical advantage of the masseter muscles than males.