Pendular activity of human upper limbs during slow and normal walking



When walking at normal and fast speeds, humans swing their upper limbs in alternation, each upper limb swinging in phase with the contralateral lower limb. However, at slow and very slow speeds, the upper limbs swing forward and back in unison, at twice the stride frequency of the lower limbs. The change from “single swinging” (in alternation) to “double swinging” (in unison) occurs consistently at a certain stride frequency for agiven individual, though different individuals may change at different stride frequencies. To explain this change in the way we use our upper limbs and individual variations in the occurrence of the change, the upper limb is modelled as a compound pendulum. Based on the kinematic properties of pendulums, we hypothesize that the stride frequency at which the change from “single swinging” to “double swinging” occurs will be at or slightly below the natural pendular frequency (NPF) of the upper limbs.

Twenty-seven subjects were measured and then filmed while walking at various speeds. The mathematically derived NPF of each subject's upper limbs was compared to the stride frequency at which the subject changed from “single swinging” to “double swinging.” The results of the study conform very closely to the hypothesis, even when the NPF is artificially altered by adding weights to the subjects' hands. These results indicate that the pendulum model of the upper limb will be useful in further investigations of the function of the upper limbs in human walking. © 1994 Wiley-Liss, Inc.