• aging;
  • allostatic load;
  • senescence


Composite estimates of physiological stress such as allostatic load (AL) were developed to help assess cumulative impacts of psychosocial and physical stressors on the body. Physiological responses to stress generally accelerate somatic wear-and-tear and chronic degenerative conditions (CDCs). Following McEwen (Neuropsychopharmacology 22 (1999) 108–124) and others, primary physiological mediators of somatic stress responses include glucocorticoids (cortisol), catecholamines (adrenaline and noradrenaline), and serum dihydroepiandosterone-sulfate (DHEA-S). Conversely, blood pressure (BP), serum HDL and total cholesterol, glycated hemoglobin (HbA1c), and waist/hip (w/h) ratio are modulated by such hormones, thereby acting as secondary mediators of stress response. When these risk factors are aggregated into a composite score, higher stress loads are associated with increased risks for days of school/work missed, functional losses, morbidity, and mortality in US samples. To examine stress loads in American Samoans, data on all 6 secondary mediators along with estimates of body habitus (i.e. height, weight, circumferences, skinfolds) and physiology (i.e. fasting insulin, LDLc, triglycerides, fasting glucose) were measured on 273 individuals residing on Tutuila Island in 1992. Four combinations of these physiological factors were used to determine composite estimates of stress. These were then assessed by sex for associations with age and the presence of diabetes. Composite estimates of stress load were higher in Samoan women than men. Associations with age tended to be low and negative in men, but positive in women, appearing to reflect cultural circumstances and population history. Stress load scores also were higher among those with diabetes than those without among both men and women. These results suggest that composite estimates of stress may be useful for assessing future risks of CDC's and the senescent processes that may underlie them in cross-cultural research. Am J Phys Anthropol, 2007. © 2007 Wiley-Liss, Inc.