SEARCH

SEARCH BY CITATION

Keywords:

  • apophyseal joint;
  • cartilage loss;
  • joint disease;
  • loading;
  • biomechanics

Abstract

An experimental technique for quantifying load-sharing in cadaveric spines is used to test the hypothesis that degenerative changes in human apophyseal joints are directly related to high levels of compressive load-bearing by these joints. About 36 cadaveric thoraco-lumbar motion segments aged 64–92 years were subjected to a compressive load of 1.5 kN. The distribution of compressive stress was measured in the intervertebral discs using a miniature pressure transducer, and stress measurements were summed over area to give the compressive force resisted by the disc. This was subtracted from the applied 1.5 kN to indicate compressive load-bearing by the apophyseal joints. The cartilage of each apophyseal joint surface was then graded for degree of degeneration. After maceration, each joint surface was scored for degenerative joint disease (DJD) affecting the bone. Results demonstrated that the apophyseal joints resisted 5–96% (mean 45%) of the applied compressive force. A significant positive correlation was demonstrated between age and cartilage degeneration, age and DJD bone score, apophyseal joint load-bearing and bone score, and cartilage score and load-bearing. The latter correlation was strongest for load-bearing above 50%. Ordinal regression showed that the variables describing bone DJD (marginal osteophytes, pitting, bony contour change, and eburnation) were significantly correlated with degree of cartilage degeneration. It is concluded that in elderly individuals apophyseal joint load-bearing above a threshold of 50% is associated with severe degenerative changes in cartilage and bone, and that markers of DJD observed palaeopathologically may be used as predictors of such loadingin life. Am J Phys Anthropol, 2008. © 2008 Wiley-Liss, Inc.