SEARCH

SEARCH BY CITATION

Keywords:

  • body mass;
  • stature;
  • metatarsal;
  • human variation;
  • regression

Abstract

Archaeological assemblages often lack the complete long bones needed to estimate stature and body mass. The most accurate estimates of body mass and stature are produced using femoral head diameter and femur length. Foot bones including the first metatarsal preserve relatively well in a range of archaeological contexts. In this article we present regression equations using the first metatarsal to estimate femoral head diameter, femoral length, and body mass in a diverse human sample. The skeletal sample comprised 87 individuals (Andamanese, Australasians, Africans, Native Americans, and British). Results show that all first metatarsal measurements correlate moderately to highly (r = 0.62–0.91) with femoral head diameter and length. The proximal articular dorsoplantar diameter is the best single measurement to predict both femoral dimensions. Percent standard errors of the estimate are below 5%. Equations using two metatarsal measurements show a small increase in accuracy. Direct estimations of body mass (calculated from measured femoral head diameter using previously published equations) have an error of just over 7%. No direct stature estimation equations were derived due to the varied linear body proportions represented in the sample. The equations were tested on a sample of 35 individuals from Christ Church Spitalfields. Percentage differences in estimated and measured femoral head diameter and length were less than 1%. This study demonstrates that it is feasible to use the first metatarsal in the estimation of body mass and stature. The equations presented here are particularly useful for assemblages where the long bones are either missing or fragmented, and enable estimation of these fundamental population parameters in poorly preserved assemblages. Am J Phys Anthropol, 2011. © 2011 Wiley-Liss, Inc.