Growth and the development of sexual size dimorphism in lorises and galagos

Authors


Abstract

Three fundamental ontogenetic pathways lead to the development of size differences between males and females. Males and females may grow at the same rate for different durations (bimaturism), grow for the same duration at different rates, or grow at a mix of rate and duration differences. While patterns of growth and the development of adult body size are well established for many haplorhines, the extent to which rate and duration differences affect strepsirrhine growth trajectories remains unclear. Here, we present iterative piecewise regression models that describe the ontogeny of adult body mass for males and females of five lorisoid species (i.e., lorises and galagos) from the Duke Lemur Center. We test the hypotheses that, like most haplorhines, sexual size dimorphism (SSD) is a result of bimaturism, and males and females of monomorphic species grow at the same rate for a similar duration. We confirm that the galagos in this sample (Galago moholi and Otolemur garnettii) show significant SSD that is achieved through bimaturism. Unlike monomorphic lemurids, the lorises in this sample show a diversity of ontogenetic patterns. Loris tardigradus does follow a lemur-like trajectory to monomorphism but Nycticebuscoucang and Nycticebus pygmaeus achieve larger adult female body sizes through a mixture of rate and duration differences. We show that contrary to previous assumptions, there are patterns of both similarity and difference in growth trajectories of comparably sized lorises and galagos. Furthermore, when ontogenetic profiles of lorisoid and lemurid growth are compared, it is evident that lorisoids grow faster for a shorter period of time. Am J Phys Anthropol, 2012. © 2011 Wiley Periodicals, Inc.

Ancillary