Get access

Ontogeny of the hominoid scapula: The influence of locomotion on morphology


  • David J. Green

    Corresponding author
    1. Center for the Advanced Study of Hominid Paleobiology, The George Washington University, NW
    • Department of Anatomy, Midwestern University, Downers Grove, IL
    Search for more papers by this author

Correspondence to: David J. Green, Department of Anatomy, Midwestern University, 555 31st Street, Downers Grove, IL 60515. E-mail:


Primate shoulder morphology has been linked with locomotor habits, oftentimes irrespective of phylogenetic heritage. Among hominoids, juvenile African apes are known to climb more frequently than adults, while orangutans and gibbons maintain an arboreal lifestyle throughout ontogeny. This study examined if these ontogenetic locomotor differences carry a morphological signal, which should be evident in the scapulae of chimpanzees and gorillas but absent in taxa that do not display ontogenetic behavioral shifts. The scapular morphology of five hominoid primates and one catarrhine outgroup was examined throughout ontogeny to evaluate if scapular traits linked with arboreal activities are modified in response to ontogenetic behavioral shifts away from climbing. Specifically, the following questions were addressed: 1) which scapular characteristics distinguish taxa with different locomotor habits; and 2) do these traits show associated changes during development in taxa known to modify their behavioral patterns? Several traits characterized suspensory taxa from nonsuspensory forms, such as cranially oriented glenohumeral joints, obliquely oriented scapular spines, relatively narrow infraspinous fossae, and inferolaterally expanded subscapularis fossae. The relative shape of the dorsal scapular fossae changed in Pan, Gorilla, and also Macaca in line with predictions based on reported ontogenetic changes in locomotor behavior. These morphological changes were mostly distinct from those seen in Pongo, Hylobates, and Homo and imply a unique developmental pattern, possibly related to ontogenetic locomotor shifts. Accordingly, features that sorted taxa by locomotor habits and changed in concert with ontogenetic behavioral patterns should be particularly useful for reconstructing the locomotor habits of fossil forms. Am J Phys Anthropol 152:239–260, 2013. © 2013 Wiley Periodicals, Inc.