Cranial airways and the integration between the inner and outer facial skeleton in humans


Correspondence to: Markus Bastir, Paleoanthropology Group, Department of Paleobiology, Museo Nacional de Ciencias Naturales, CSIC, Jose Gutiérrez Abascal 2, 28006 Madrid, Spain. E-mail:


The cranial airways are in the center of the human face. Therefore variation in the size and shape of these central craniofacial structures could have important consequences for the surrounding midfacial morphology during development and evolution. Yet such interactions are unclear because one school of thought, based on experimental and developmental evidence, suggests a relative independence (modularity) of these two facial compartments, whereas another one assumes tight morphological integration. This study uses geometric morphometrics of modern humans (N = 263) and 40 three-dimensional-landmarks of the skeletal nasopharynx and nasal cavity and outer midfacial skeleton to analyze these questions in terms of modularity. The sizes of all facial compartments were all strongly correlated. Shape integration was high between the cranial airways and the outer midfacial skeleton and between the latter and the anterior airway openings (skeletal regions close to and including piriform aperture). However, no shape integration was detected between outer midface and posterior airway openings (nasopharynx and choanae). Similarly, no integration was detected between posterior and anterior airway openings. This may reflect functional modularization of nasal cavity compartments related to respiratory physiology and differential developmental interactions with the face. Airway size likely relates to the energetics of the organism, whereas airways shape might be more indicative of respiratory physiology and climate. Although this hypothesis should be addressed in future steps, here we suggest that selection on morphofunctional characteristics of the cranial airways could have cascading effects for the variation, development, and evolution of the human face. Am J Phys Anthropol 152:287–293, 2013. © 2013 Wiley Periodicals, Inc.