Identification of a derived dental trait in the papionini relative to other old world monkeys



Variation in the shape of teeth provides an immense amount of information about the evolutionary history and adaptive strategy of a mammalian lineage. Here, we explore variation in the expression of a purported molar lingual remnant (the interconulus) across the Old World Monkeys (Primates: Cercopithecidae) with the aim of elucidating a component of the adaptive radiation of this family. This radiation is characterized by a wide geographic range (Asia and Africa) as well as diverse dietary niches. While all of the cercopithecids are distinguished by their derived bilophodont molars, the colobines have evolved taller and more pointed cusps compared with the cercopithecines. We investigate whether the interconulus also correlates with phylogenetic affinity and/or dietary adaptation. We assess the frequency and range of interconulus expression in 522 specimens representing seven species of Old World Monkeys (Cercopithecus mitis, n = 78; Macaca fascicularis, n = 85; Macaca mulatta, n = 70; Papio hamadryas, n = 55; Colobus guereza, n = 76; Presbytis melalophos, n = 82; Presbytis rubicunda, n = 76). Results show that the interconulus has a significantly higher frequency and degree of expression in Tribe Papionini and exhibits ordered metameric variation with greatest expression in the third molars. Given the rarity of the interconulus in other closely related taxa, and its morphological distinction from the purportedly homologous features in other primates, we interpret the high degree of expression of the interconulus to be a trait derived in papionins that originated in the Miocene baboon/macaque ancestor. Am J Phys Anthropol, 155:422–429, 2014. © 2014 Wiley Periodicals, Inc.