To determine if suppressing Nogo-A, an axonal inhibitory protein, will promote functional recovery in a murine model of multiple sclerosis (MS).


A small interfering RNA was developed to specifically suppress Nogo-A (siRNA-NogoA). The siRNA-NogoA silencing effect was evaluated in vitro and in vivo via immunohistochemistry. The siRNA was administered intravenously in 2 models of experimental autoimmune encephalomyelitis (EAE). Axonal repair was measured by upregulation of GAP43. Enzyme-linked immunosorbent assay, flow cytometry, and 3H-thymidine incorporation were used to determine immunological changes in myelin-specific T cells in mice with EAE.


The siRNA-NogoA suppressed Nogo-A expression in vitro and in vivo. Systemic administration of siRNA-NogoA ameliorated EAE and promoted axonal repair, as demonstrated by enhanced GAP43+ axons in the lesions. Myelin-specific T-cell proliferation and cytokine production were unchanged in the siRNA-NogoA–treated mice.


Silencing Nogo-A in EAE promotes functional recovery. The therapeutic benefit appears to be mediated by axonal growth and repair, and is not attributable to changes in the encephalitogenic capacity of the myelin-specific T cells. Silencing Nogo-A may be a therapeutic option for MS patients to prevent permanent functional deficits caused by immune-mediated axonal damage. ANN NEUROL 2010;67:498–507