SEARCH

SEARCH BY CITATION

Abstract

Objective:

Multiple sclerosis (MS) is a complex neurological disease. Genetic linkage analysis and genotyping of candidate genes in families with 4 or more affected individuals more heavily loaded for susceptibility genes has not fully explained familial disease clustering.

Methods:

We performed whole exome sequencing to further understand the heightened prevalence of MS in these families.

Results:

Forty-three individuals with MS (1 from each family) were sequenced to find rare variants in candidate MS susceptibility genes. On average, >58,000 variants were identified in each individual. A rare variant in the CYP27B1 gene causing complete loss of gene function was identified in 1 individual. Homozygosity for this mutation results in vitamin D-dependent rickets I (VDDR1), whereas heterozygosity results in lower calcitriol levels. This variant showed significant heterozygous association in 3,046 parent-affected child trios (p = 1 × 10−5). Further genotyping in >12,500 individuals showed that other rare loss of function CYP27B1 variants also conferred significant risk of MS, Peto odds ratio = 4.7 (95% confidence interval, 2.3–9.4; p = 5 × 10−7). Four known VDDR1 mutations were identified, all overtransmitted. Heterozygous parents transmitted these alleles to MS offspring 35 of 35× (p = 3 × 10−9).

Interpretation:

A causative role for CYP27B1 in MS is supported; the mutations identified are known to alter function having been shown in vivo to result in rickets when 2 copies are present. CYP27B1 encodes the vitamin D-activating 1-alpha hydroxylase enzyme, and thus a role for vitamin D in MS pathogenesis is strongly implicated. ANN NEUROL 2011;70:881–886