SEARCH

SEARCH BY CITATION

Abstract

Objective:

Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused in almost all cases by homozygosity for a GAA trinucleotide repeat expansion in the frataxin gene. Frataxin is a mitochondrial protein involved in iron homeostasis. FRDA patients have a high prevalence of diabetes, the pathogenesis of which is not known. We aimed to evaluate the relative contribution of insulin resistance and β-cell failure and the pathogenic mechanisms involved in FRDA diabetes.

Methods:

Forty-one FRDA patients, 26 heterozygous carriers of a GAA expansion, and 53 controls underwent oral and intravenous glucose tolerance tests. β-Cell proportion was quantified in postmortem pancreas sections from 9 unrelated FRDA patients. Using an in vitro disease model, we studied how frataxin deficiency affects β-cell function and survival.

Results:

FRDA patients had increased abdominal fat and were insulin resistant. This was not compensated for by increased insulin secretion, resulting in a markedly reduced disposition index, indicative of pancreatic β-cell failure. Loss of glucose tolerance was driven by β-cell dysfunction, which correlated with abdominal fatness. In postmortem pancreas sections, pancreatic islets of FRDA patients had a lower β-cell content. RNA interference–mediated frataxin knockdown impaired glucose-stimulated insulin secretion and induced apoptosis in rat β cells and human islets. Frataxin deficiency sensitized β cells to oleate-induced and endoplasmic reticulum stress-induced apoptosis, which could be prevented by the incretins glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide.

Interpretation:

Pancreatic β-cell dysfunction is central to diabetes development in FRDA as a result of mitochondrial dysfunction and higher sensitivity to metabolic and endoplasmic reticulum stress-induced β-cell death. ANN NEUROL 2012;72:971–982