SEARCH

SEARCH BY CITATION

Abstract

Several different drugs are now used, or are potentially useful, to treat patients with spasticity. Although these compounds vary in their actions on spinal neurons and reflex arcs, it is possible to formulate reasonable hypotheses regarding their modes of action. The benzodiazepines bind to specific benzodiazepine receptors linked to classic γ-aminobutyric acid (GABA) receptors located on the terminals of primary afferent fibers. This binding results in an increased affinity of the GABA receptor for the amino acid, an augmented flux of chloride ions across the terminal membrane, and an increase in the amount of presynaptic inhibition. Baclofen activates GABAB receptors putatively located on the same terminals. Activation of these receptors retards the influx of calcium ions into the terminals, thereby reducing the evoked release of excitatory amino acids and possibly other transmitters. Progabide and its metabolites act on both classic and GABAB receptors. Glycine works on specific inhibitory receptors located on spinal interneurons and motoneurons. The phenothiazines act on the brainstem to alter the function of fusimotor fibers. Phenytoin and carbamazepine reduce the afferent output of muscle spindles. Dantrolene diminishes the activation of the contractile process in muscle fibers by reducing the release of calcium ions from the sarcoplasmic reticulum. This review summarizes the data supporting these concepts.