Calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors: A molecular determinant of selective vulnerability in amyotrophic lateral sclerosis

Authors


Abstract

The cause of the selective degeneration of motor neurons in amyotrophic lateral sclerosis (ALS) remains unexplained. One potential pathogenetic mechanism is chronic toxicity due to disturbances of the glutamatergic neurotransmitter system, mediated via α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive glutamate receptors. Functional AMPA receptors consist of various combinations of four subunits (designated GluR1–4). The GluR2 subunit is functionally dominant and renders AMPA receptors impermeable to calcium. Most native AMPA receptors in the mammalian central nervous system (CNS) contain the GluR2 subunit and are calcium impermeable. We have investigated the composition of AMPA receptors expressed on normal human spinal motor neurons by in situ hybridization to determine their likely subunit stoichiometry. Highly significant levels of mRNA were detected for the GluR1, GluR3, and GluR4 subunits. However, GluR2 subunit mRNA was not detectable in this cell group. The absence of detectable GluR2 mRNA in normal human spinal motor neurons prdicts that they express calcium-permeable AMPA receptors unlike most neuronal groups in the human CNS. Expression of atypical calcium-permeable AMPA receptors by human motor neurons provides a possible mechanism whereby disturbances of glutamate neurotransmission in ALS may selectively injure this cell group.

Ancillary