Maximum entropy approach to Schrödinger's radial equation

Authors

  • F. Garcias,

    1. Departamento de Física, Universidad de las Islas Baleares, E-07071 Palma de Mallorca, Spain
    Search for more papers by this author
  • M. Casas,

    1. Department of Physics, National University of La Plata, Argentina
    Search for more papers by this author
    • Departamento de Fisica, Universidad de las Islas Baleares, E-07071 Palma de Mallorca, Spain.

  • A. Plastino

    Corresponding author
    1. Department of Physics, National University of La Plata, Argentina
    • Departamento de Fisica, Universidad Nacional de La Plata, C.C. 727, 1900 La Plata, Argentina
    Search for more papers by this author

Abstract

From the sole knowledge (at a finite number of points) of the numerical values of the potential V(r) corresponding to Schrödinger's radial equation, it is found that recourse to Information Theory (IT) concepts allows one to infer the pertinent wave functions (and eigenvalues) without attempting to solve the concomitant differential equation. Moreover, the underlying IT ideas allow for an analytical treatment that yields exact wave functions of the maximum (quantal) entropy form in a number of cases of interest.

Ancillary