Brownian motion in fluctuating periodic potentials



This work deals with the overdamped motion of a particle in a fluctuating one-dimensional periodic potential. If the potential has no inversion symmetry and its fluctuations are asymmetric and correlated in time, a net flow can be generated at finite temperatures. We present results for the stationary current for the case of a piecewise linear potential, especially for potentials being close to the case with inversion symmetry. The aim is to study the stationary current as a function of the potential. Depending on the form of the potential, the current changes sign once or even twice as a function of the correlation time of the potential fluctuations. To explain these current reversals, several mechanisms are proposed. Finally, we discuss to what extent the model is useful to understand the motion of biomolecular motors.