SEARCH

SEARCH BY CITATION

Keywords:

  • Pre-metric electromagnetism;
  • exterior differential systems;
  • symmetries of differential equations;
  • electromagnetic constitutive laws;
  • projective relativity

Abstract

The equations of pre-metric electromagnetism are formulated as an exterior differential system on the bundle of exterior differential 2-forms over the spacetime manifold. The general form for the symmetry equations of the system is computed and then specialized to various possible forms for an electromagnetic constitutive law, namely, uniform linear, non-uniform linear, and uniform nonlinear. It is shown that in the uniform linear case, one has four possible ways of prolonging the symmetry Lie algebra, including prolongation to a Lie algebra of infinitesimal projective transformations of a real four-dimensional projective space. In the most general non-uniform linear case, the effect of non-uniformity on symmetry seems inconclusive in the absence of further specifics, and in the uniform nonlinear case, the overall difference from the uniform linear case amounts to a deformation of the electromagnetic constitutive tensor by the electromagnetic field strengths, which induces a corresponding deformation of the symmetry Lie algebra that was obtained in the linear uniform case.