• Metal-insulator transition;
  • dynamical mean-field theory;
  • high-spin–low-spin transition.


We review our investigations of electronic properties of strongly correlated materials using the combination of first principles electronic band structures and the dynamical mean-field theory, so called LDA+DMFT method. Our investigations focus on two phenomena, the spin state transitions and their relationship to the metal-insulator transition, and the effect of hybridization between correlated and ligand orbitals in charge-transfer type materials. The pressure driven spin transitions are studied for a group of materials containing MnO, FeO and Fe2O3. To investigate the hybridization effects we focus on NiO and NiS(Se)2. We identify various mechanisms of the metal-insulator transition, which can take place in multi-band systems, in addition to the band-width control known from the single band Hubbard model.