Get access

Origin of Low CO2 Selectivity on Platinum in the Direct Ethanol Fuel Cell

Authors

  • Richard Kavanagh,

    1. School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast BT9 5AG (UK)
    Search for more papers by this author
  • Dr. Xiao-Ming Cao,

    1. School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast BT9 5AG (UK)
    Search for more papers by this author
  • Dr. Wen-Feng Lin,

    Corresponding author
    1. School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast BT9 5AG (UK)
    • School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast BT9 5AG (UK)
    Search for more papers by this author
  • Prof. Christopher Hardacre,

    1. School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast BT9 5AG (UK)
    Search for more papers by this author
  • Prof. P. Hu

    Corresponding author
    1. School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast BT9 5AG (UK)
    • School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast BT9 5AG (UK)
    Search for more papers by this author

  • We are grateful for the support and advice of Johnson Matthey and the EPSRC.

Abstract

original image

Berechnete Antwort: Die Energiebarriere für den Schlüsselschritt der CO-Bildung an einer Platinoberfläche (siehe Bild, Pt blau, Pt-Atome an Stufenkante gelb) wurde in DFT-Rechnungen untersucht, um Einblick in die niedrige CO2-Selektivität der direkten Ethanol-Brennstoffzelle zu gewinnen. Die Gegenwart von Oberflächenoxidantien wie O (brauner Balken) und OH (roter Balken) führt zur Erhöhung der Energiebarriere und damit zur Inhibierung des Schlüsselschrittes.

Get access to the full text of this article

Ancillary