A Drug-Delivery Vehicle Combining the Targeting and Thermal Ablation of HER2+ Breast-Cancer Cells with Triggered Drug Release

Authors

  • Prof. Dr. Jin-Oh You,

    1. School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (USA)
    2. Department of Engineering Chemistry, Chungbuk National University, Cheongju, 361-763 (Republic of Korea)
    Search for more papers by this author
  • Dr. Peng Guo,

    1. School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (USA)
    2. Department of Surgery, Harvard Medical School, Boston, MA 02115 (USA)
    3. Vascular Biology Program, Children's Hospital Boston, Boston, MA 02115 (USA)
    4. Department of Biomedical Engineering, The City College of New York, New York, NY 10031 (USA)
    Search for more papers by this author
  • Prof. Dr. Debra T. Auguste

    Corresponding author
    1. School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (USA)
    2. Department of Surgery, Harvard Medical School, Boston, MA 02115 (USA)
    3. Vascular Biology Program, Children's Hospital Boston, Boston, MA 02115 (USA)
    4. Department of Biomedical Engineering, The City College of New York, New York, NY 10031 (USA)
    • School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (USA)
    Search for more papers by this author

  • We thank Prof. David Mooney and Dr. Praveen Arany for use of the NIR laser device and Dariela Almeda for FACS analysis. We gratefully acknowledge financial support from the Kavli Institute for Bionano Science and Technology at Harvard University. This research was supported by NIH (1DP2A174495) and NSF (DMR-0820484). This research was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765. CNS is part of the Faculty of Arts and Sciences at Harvard University.

Abstract

original image

Wirkstofftransportvehikel, die Goldnanopartikel und Doxorubicin (Dox) innerhalb einer pH-responsiven Matrix enthalten, wurden synthetisiert. Die Oberfläche wurde mit Herceptin-Poly(ethylenglycol)-Konjugaten ausgestattet, um spezifisch an Krebszellen zu binden (siehe Bild; NIR=nahes Infrarot). Die Vehikel zeigten gesteigerte Zytotoxizität nach Auslösen der Wirkstoff-Freisetzung (bei pH 5–6) und thermische Ablation (ein photothermischer Effekt).

Ancillary