Get access
Advertisement

Electron-Beam-Induced Deposition of Bimetallic Nanostructures from Bulk Liquids

Authors

  • Dr. Matthew Bresin,

    1. Department of Electrical and Computer Engineering, University of Kentucky, 453 F. Paul Anderson Tower, Lexington, KY (USA)
    Search for more papers by this author
  • Adam Chamberlain,

    1. Department of Electrical and Computer Engineering, University of Kentucky, 453 F. Paul Anderson Tower, Lexington, KY (USA)
    Search for more papers by this author
  • Dr. Eugenii U. Donev,

    1. Department of Electrical and Computer Engineering, University of Kentucky, 453 F. Paul Anderson Tower, Lexington, KY (USA)
    Search for more papers by this author
  • Dr. Chandan B. Samantaray,

    1. Department of Electrical and Computer Engineering, University of Kentucky, 453 F. Paul Anderson Tower, Lexington, KY (USA)
    Search for more papers by this author
  • Gregory S. Schardien,

    1. Department of Electrical and Computer Engineering, University of Kentucky, 453 F. Paul Anderson Tower, Lexington, KY (USA)
    Search for more papers by this author
  • Prof. Dr. J. Todd Hastings

    Corresponding author
    1. Department of Electrical and Computer Engineering, University of Kentucky, 453 F. Paul Anderson Tower, Lexington, KY (USA)
    • Department of Electrical and Computer Engineering, University of Kentucky, 453 F. Paul Anderson Tower, Lexington, KY (USA)
    Search for more papers by this author

  • This material is partially based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under award number N66001-09-1-2099. This material is also based upon work supported by the National Science Foundation under grant number CMMI-1125998. The authors thank C. May, B. Wajdyk, and the University of Kentucky Center for Nanoscale Science and Engineering as well as J. Ye, L. Rice, and the University of Kentucky Electron Microscopy Center for valuable technical support.

Abstract

original image

Dimetallische Deposite mit berechenbarer Zusammensetzung wurden durch einen elektronenstrahlinduzierten Abscheidungsprozess aus der flüssigen Phase hergestellt. Die Zusammensetzungen wurden aus den Geschwindigkeitskonstanten erster Ordnung für die Reaktion solvatisierter Elektronen und metallionischer Komplexe berechnet. Die AuAg- und AuPt-Nanopartikel haben Durchmesser von weniger als 100 nm und einen hohen Reinheitsgrad.

Get access to the full text of this article

Ancillary