SEARCH

SEARCH BY CITATION

Keywords:

  • Diamant;
  • Graphen;
  • Hochdruckchemie;
  • Konformationsänderungen;
  • Stempelzellen

Abstract

Using IR spectroscopy, high-pressure reactions of molecules were observed in liquids entrapped by graphene nanobubbles formed at the graphene–diamond interface. Nanobubbles formed on graphene as a result of thermally induced bonding of its edges with diamond are highly impermeable, thus providing a good sealing of solvents within. Owing to the optical transparency of graphene and diamond, high-pressure chemical reactions within the bubbles can be probed with vibrational spectroscopy. By monitoring the conformational changes of pressure-sensitive molecules, the pressure within the nanobubble can be calibrated as a function of temperature and it is about 1 GPa at 600 K. The polymerization of buckministerfullerene (C60), which is symmetrically forbidden under ambient conditions, is observed to proceed in well-defined stages in the pressurized nanobubbles.