SEARCH

SEARCH BY CITATION

Keywords:

  • Cobalt-Nanokristalle;
  • Elektrolyse;
  • Heterogene Katalyse;
  • Kohlenstoffnanoröhren;
  • Wasserstoffentwicklung

Abstract

The development of effective and inexpensive hydrogen evolution reaction (HER) electrocatalysts for future renewable energy systems is highly desired. The strongly acidic conditions in proton exchange membranes create a need for acid-stable HER catalysts. A nanohybrid that consists of carbon nanotubes decorated with CoP nanocrystals (CoP/CNT) was prepared by the low-temperature phosphidation of a Co3O4/CNT precursor. As a novel non-noble-metal HER catalyst operating in acidic electrolytes, the nanohybrid exhibits an onset overpotential of as low as 40 mV, a Tafel slope of 54 mV dec−1, an exchange current density of 0.13 mA cm−2, and a Faradaic efficiency of nearly 100 %. This catalyst maintains its catalytic activity for at least 18 hours and only requires overpotentials of 70 and 122 mV to attain current densities of 2 and 10 mA cm−2, respectively.