• Noncrystalline state;
  • Amorphous materials;
  • Disorder;
  • Solids;
  • Glass transition;
  • Glasses;
  • Materials science


This article sets out to describe and account for the chemical and physical consequences of the presence of gross disorder in solids. Knowledge of the structure of such disordered materials is an obvious prerequisite to a further understanding of other properties and behavior, and our current knowledge of the structure of various noncrystalline systems is discussed together with the experimental techniques which need to be employed in order to obtain such information. The so-called glass transition, which takes place as a liquid is supercooled below the crystallization temperature, is discussed in terms of the various models which have been proposed to account for this phenomenon. The effect of noncrystallinity on electronic properties is also discussed, and we highlight new developments in the understanding of electron localization and transport processes. Finally, two applications of amorphous solids are considered in some detail: optical fibers for use in communication networks and “superionic” glasses for possible use in solid-state batteries.