SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Weiping Deng, Qinghong Zhang, Ye Wang, Catalytic transformations of cellulose and its derived carbohydrates into 5-hydroxymethylfurfural, levulinic acid, and lactic acid, Science China Chemistry, 2015, 58, 1, 29

    CrossRef

  2. 2
    Chandrani Chatterjee, Frances Pong, Ayusman Sen, Chemical conversion pathways for carbohydrates, Green Chem., 2015, 17, 1, 40

    CrossRef

  3. 3
    Fujian Liu, Weiping Kong, Liang Wang, Xianfeng Yi, Iman Noshadi, Anmin Zheng, Chenze Qi, Efficient biomass transformations catalyzed by graphene-like nanoporous carbons functionalized with strong acid ionic liquids and sulfonic groups, Green Chem., 2015, 17, 1, 480

    CrossRef

  4. 4
    Peter J. Deuss, Katalin Barta, From models to lignin: Transition metal catalysis for selective bond cleavage reactions, Coordination Chemistry Reviews, 2015,

    CrossRef

  5. 5
    Danilo A. Cantero, M. Dolores Bermejo, M. José Cocero, Governing Chemistry of Cellulose Hydrolysis in Supercritical Water, ChemSusChem, 2015, 8, 4
  6. 6
    Jacob H. Prosser, Daeyeon Lee, Ionothermal Stability of Mesoporous Silica Films, Industrial & Engineering Chemistry Research, 2015, 54, 3, 957

    CrossRef

  7. 7
    Liang Wang, Feng-Shou Xiao, Nanoporous catalysts for biomass conversion, Green Chem., 2015, 17, 1, 24

    CrossRef

  8. 8
    Danilo A. Cantero, M. Dolores Bermejo, M. José Cocero, Reaction engineering for process intensification of supercritical water biomass refining, The Journal of Supercritical Fluids, 2015, 96, 21

    CrossRef

  9. 9
    Huifang Ren, Buana Girisuta, Yonggui Zhou, Li Liu, Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid, Carbohydrate Polymers, 2015, 117, 569

    CrossRef

  10. 10
    Claudia Loerbroks, Eliot Boulanger, Walter Thiel, Solvent Influence on Cellulose 1,4-β-Glycosidic Bond Cleavage: A Molecular Dynamics and Metadynamics Study, Chemistry - A European Journal, 2015, 21, 10
  11. 11
    Hwankyu Lee, Tae-Joon Jeon, The binding and insertion of imidazolium-based ionic surfactants into lipid bilayers: the effects of the surfactant size and salt concentration, Phys. Chem. Chem. Phys., 2015, 17, 8, 5725

    CrossRef

  12. 12
    Subodh Kumar, Raj Kumar Singh, Suman L. Jain, 1,1,3,3-Tetramethylguanidinium hydrogen sulphate (TMG·HSO4) ionic liquid in carbon dioxide enriched water: a highly efficient acidic catalytic system for the hydrolysis of cellulose, RSC Adv., 2014, 4, 102, 58238

    CrossRef

  13. 13
    Manfred T. Reetz, 100 Jahre Max-Planck-Institut für Kohlenforschung, Angewandte Chemie, 2014, 126, 33
  14. 14
    Dong Tian, Yangyang Han, Canhui Lu, Xinxing Zhang, Guiping Yuan, Acidic ionic liquid as “quasi-homogeneous” catalyst for controllable synthesis of cellulose acetate, Carbohydrate Polymers, 2014, 113, 83

    CrossRef

  15. 15
    Ashley J. Holding, Mikko Heikkilä, Ilkka Kilpeläinen, Alistair W. T. King, Amphiphilic and Phase-Separable Ionic Liquids for Biomass Processing, ChemSusChem, 2014, 7, 5
  16. 16
    Giorgio Cevasco, Cinzia Chiappe, Are ionic liquids a proper solution to current environmental challenges?, Green Chemistry, 2014, 16, 5, 2375

    CrossRef

  17. 17
    Qingyue Wang, Qiyu Chen, Naoki Mitsumura, Sarkar Animesh, Behavior of cellulose liquefaction after pretreatment using ionic liquids with water mixtures, Journal of Applied Polymer Science, 2014, 131, 11
  18. 18
    Rodrigo O. M. A. de Souza, Leandro S. M. Miranda, Rafael Luque, Bio(chemo)technological strategies for biomass conversion into bioethanol and key carboxylic acids, Green Chemistry, 2014, 16, 5, 2386

    CrossRef

  19. 19
    Haile Cai, Changzhi Li, Aiqin Wang, Tao Zhang, Biomass into chemicals: One-pot production of furan-based diols from carbohydrates via tandem reactions, Catalysis Today, 2014, 234, 59

    CrossRef

  20. 20
    Edmond Lam, John H.T. Luong, Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals, ACS Catalysis, 2014, 4, 10, 3393

    CrossRef

  21. 21
    Amarajothi Dhakshinamoorthy, Abdullah M. Asiri, Hermenegildo Garcia, Catalysis by metal–organic frameworks in water, Chem. Commun., 2014, 50, 85, 12800

    CrossRef

  22. 22
    Rosaria Ciriminna, Piera Demma Carà, Jose A. Lopez-Sanchez, Mario Pagliaro, Catalysis via Sol–Gel Acid Silicas: An Important Chemical Technology for 2nd Generation Biorefineries, ChemCatChem, 2014, 6, 11
  23. 23
    Nur Aainaa Syahirah Ramli, Nor Aishah Saidina Amin, Catalytic hydrolysis of cellulose and oil palm biomass in ionic liquid to reducing sugar for levulinic acid production, Fuel Processing Technology, 2014, 128, 490

    CrossRef

  24. 24
    Mizuho Yabushita, Hirokazu Kobayashi, Atsushi Fukuoka, Catalytic transformation of cellulose into platform chemicals, Applied Catalysis B: Environmental, 2014, 145, 1

    CrossRef

  25. 25
    Weiping Deng, Qinghong Zhang, Ye Wang, Catalytic transformations of cellulose and cellulose-derived carbohydrates into organic acids, Catalysis Today, 2014, 234, 31

    CrossRef

  26. 26
    Iunia Podolean, Alina Negoi, Natalia Candu, Madalina Tudorache, Vasile I. Parvulescu, Simona M. Coman, Cellulose Capitalization to Bio-chemicals in the Presence of Magnetic Nanoparticle Catalysts, Topics in Catalysis, 2014, 57, 17-20, 1463

    CrossRef

  27. 27
    Xingchao Dai, Xinjiang Cui, Hangkong Yuan, Youquan Deng, Feng Shi, Cooperative transformation of nitroarenes and biomass-based alcohols catalyzed by CuNiAlOx, RSC Adv., 2014, 5, 11, 7970

    CrossRef

  28. 28
    Liang Wang, Jian Zhang, Xuefeng Wang, Bingsen Zhang, Weijie Ji, Xiangju Meng, Jixue Li, Dang Sheng Su, Xinhe Bao, Feng-Shou Xiao, Creation of Brønsted acid sites on Sn-based solid catalysts for the conversion of biomass, Journal of Materials Chemistry A, 2014, 2, 11, 3725

    CrossRef

  29. 29
    Jing Li, Lingtao Liu, Yue Liu, Mingzhe Li, Yihan Zhu, Haichao Liu, Yuan Kou, Jizhe Zhang, Yu Han, Ding Ma, Direct conversion of cellulose using carbon monoxide and water on a Pt–Mo2C/C catalyst, Energy Environ. Sci., 2014, 7, 1, 393

    CrossRef

  30. 30
    Nan Wang, Jie Zhang, Honghui Wang, Qiang Li, Sun’an Wei, Dan Wang, Effects of metal ions on the hydrolysis of bamboo biomass in 1-butyl-3-methylimidazolium chloride with dilute acid as catalyst, Bioresource Technology, 2014, 173, 399

    CrossRef

  31. 31
    Wenwen Zhu, Hanmin Yang, Jizhong Chen, Chen Chen, Li Guo, Huimei Gan, Xiuge Zhao, Zhenshan Hou, Efficient hydrogenolysis of cellulose into sorbitol catalyzed by a bifunctional catalyst, Green Chemistry, 2014, 16, 3, 1534

    CrossRef

  32. 32
    Roger A. Sheldon, Green and sustainable manufacture of chemicals from biomass: state of the art, Green Chem., 2014, 16, 3, 950

    CrossRef

  33. 33
    Maria J. Climent, Avelino Corma, Sara Iborra, Maria J. Sabater, Heterogeneous Catalysis for Tandem Reactions, ACS Catalysis, 2014, 4, 3, 870

    CrossRef

  34. 34
    Yong Liu, Lungang Chen, Tiejun Wang, Xinghua Zhang, Jinxing Long, Qi Zhang, Longlong Ma, High yield of renewable hexanes by direct hydrolysis–hydrodeoxygenation of cellulose in an aqueous phase catalytic system, RSC Adv., 2014, 5, 15, 11649

    CrossRef

  35. 35
    Daqian Ding, Jianjian Wang, Jinxu Xi, Xiaohui Liu, Guanzhong Lu, Yanqin Wang, High-yield production of levulinic acid from cellulose and its upgrading to γ-valerolactone, Green Chemistry, 2014, 16, 8, 3846

    CrossRef

  36. 36
    Liang Wang, Bingsen Zhang, Xiangju Meng, Dang Sheng Su, Feng-Shou Xiao, Hydrogenation of Biofuels with Formic Acid over a Palladium-Based Ternary Catalyst with Two Types of Active Sites, ChemSusChem, 2014, 7, 6
  37. 37
    Yan Xiong, Zehui Zhang, Xin Wang, Bing Liu, Jintao Lin, Hydrolysis of cellulose in ionic liquids catalyzed by a magnetically-recoverable solid acid catalyst, Chemical Engineering Journal, 2014, 235, 349

    CrossRef

  38. 38
    Huyen Thanh Vo, Vania Tanda Widyaya, Jungho Jae, Hoon Sik Kim, Hyunjoo Lee, Hydrolysis of ionic cellulose to glucose, Bioresource Technology, 2014, 167, 484

    CrossRef

  39. 39
    Chunping Xu, Rick Arneil D. Arancon, Jalel Labidi, Rafael Luque, Lignin depolymerisation strategies: towards valuable chemicals and fuels, Chem. Soc. Rev., 2014, 43, 22, 7485

    CrossRef

  40. 40
    F. Schüth, R. Rinaldi, N. Meine, M. Käldström, J. Hilgert, M.D. Kaufman Rechulski, Mechanocatalytic depolymerization of cellulose and raw biomass and downstream processing of the products, Catalysis Today, 2014, 234, 24

    CrossRef

  41. 41
    Manfred T. Reetz, One Hundred Years of the Max-Planck-Institut für Kohlenforschung, Angewandte Chemie International Edition, 2014, 53, 33
  42. 42
    Kakasaheb Y. Nandiwale, Nitish D. Galande, Pratika Thakur, Sanjay D. Sawant, Vishal P. Zambre, Vijay V. Bokade, One-Pot Synthesis of 5-Hydroxymethylfurfural by Cellulose Hydrolysis over Highly Active Bimodal Micro/Mesoporous H-ZSM-5 Catalyst, ACS Sustainable Chemistry & Engineering, 2014, 2, 7, 1928

    CrossRef

  43. 43
    Xinhua Qi, Youfen Lian, Lulu Yan, Richard L. Smith, One-step preparation of carbonaceous solid acid catalysts by hydrothermal carbonization of glucose for cellulose hydrolysis, Catalysis Communications, 2014, 57, 50

    CrossRef

  44. 44
    Jinxu Xi, Daqian Ding, Yi Shao, Xiaohui Liu, Guanzhong Lu, Yanqin Wang, Production of Ethylene Glycol and Its Monoether Derivative from Cellulose, ACS Sustainable Chemistry & Engineering, 2014, 2, 10, 2355

    CrossRef

  45. 45
    Tingting You, Liming Zhang, Sukun Zhou, Feng Xu, Protic acid resin enhanced 1-butyl-3-methylimidazolium chloride pretreatment of Arundo donax Linn., Bioresource Technology, 2014, 167, 574

    CrossRef

  46. 46
    Yan Wang, Hang Song, Lincai Peng, Qiangsheng Zhang, Shun Yao, Recent developments in the catalytic conversion of cellulose, Biotechnology & Biotechnological Equipment, 2014, 28, 6, 981

    CrossRef

  47. 47
    Pablo Domínguez de María, Recent trends in (ligno)cellulose dissolution using neoteric solvents: switchable, distillable and bio-based ionic liquids, Journal of Chemical Technology and Biotechnology, 2014, 89, 1
  48. 48
    Yufei Niu, Hua Wang, Xinli Zhu, Zhiqiang Song, Xianna Xie, Xiao Liu, Jinyu Han, Qingfeng Ge, Ru supported on zirconia-modified SBA-15 for selective conversion of cellobiose to hexitols, Microporous and Mesoporous Materials, 2014, 198, 215

    CrossRef

  49. 49
    Liang Wang, Hong Wang, Fujian Liu, Anmin Zheng, Jian Zhang, Qi Sun, James P. Lewis, Longfeng Zhu, Xiangju Meng, Feng-Shou Xiao, Selective Catalytic Production of 5-Hydroxymethylfurfural from Glucose by Adjusting Catalyst Wettability, ChemSusChem, 2014, 7, 2
  50. 50
    Ronen Weingarten, Alexandra Rodriguez-Beuerman, Fei Cao, Jeremy S. Luterbacher, David Martin Alonso, James A. Dumesic, George W. Huber, Selective Conversion of Cellulose to Hydroxymethylfurfural in Polar Aprotic Solvents, ChemCatChem, 2014, 6, 8
  51. 51
    Hui Yang, Liqing Wang, Lishan Jia, Chenchao Qiu, Qi Pang, Xinwei Pan, Selective Decomposition of Cellulose into Glucose and Levulinic Acid over Fe-Resin Catalyst in NaCl Solution under Hydrothermal Conditions, Industrial & Engineering Chemistry Research, 2014, 53, 15, 6562

    CrossRef

  52. 52
    Florent Boissou, Karine De Oliveira Vigier, Boris Estrine, Sinisa Marinkovic, François Jérôme, Selective Depolymerization of Cellulose to Low Molecular Weight Cello-Oligomers Catalyzed by Betaïne Hydrochloride, ACS Sustainable Chemistry & Engineering, 2014, 2, 12, 2683

    CrossRef

  53. 53
    Barmak Mostofian, Jeremy C. Smith, Xiaolin Cheng, Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution, Cellulose, 2014, 21, 2, 983

    CrossRef

  54. 54
    Guanna Li, Evgeny A. Pidko, Emiel J. M. Hensen, Synergy between Lewis acid sites and hydroxyl groups for the isomerization of glucose to fructose over Sn-containing zeolites: a theoretical perspective, Catal. Sci. Technol., 2014, 4, 8, 2241

    CrossRef

  55. 55
    J. S. Luterbacher, D. Martin Alonso, J. A. Dumesic, Targeted chemical upgrading of lignocellulosic biomass to platform molecules, Green Chem., 2014, 16, 12, 4816

    CrossRef

  56. 56
    Ruud J.H. Grisel, Arjan T. Smit, Thermochemical saccharification of cellulose: The benefit of adding a scavenger, Applied Catalysis A: General, 2014, 475, 438

    CrossRef

  57. 57
    Gherardo Gliozzi, Anna Innorta, Alessia Mancini, Rossella Bortolo, Carlo Perego, Marco Ricci, Fabrizio Cavani, Zr/P/O catalyst for the direct acid chemo-hydrolysis of non-pretreated microcrystalline cellulose and softwood sawdust, Applied Catalysis B: Environmental, 2014, 145, 24

    CrossRef

  58. 58
    Eika W. Qian, Research Approaches to Sustainable Biomass Systems, 2014,

    CrossRef

  59. 59
    S. Morales-Delarosa, J.M. Campos-Martin, Advances in Biorefineries, 2014,

    CrossRef

  60. 60
    K. Wilson, A.F. Lee, Advances in Biorefineries, 2014,

    CrossRef

  61. 61
    Dan Groff, Anthe George, Ning Sun, Noppadon Sathitsuksanoh, Gregory Bokinsky, Blake A. Simmons, Bradley M. Holmes, Jay D. Keasling, Acid enhanced ionic liquid pretreatment of biomass, Green Chemistry, 2013, 15, 5, 1264

    CrossRef

  62. 62
    Jiping MA, Weiqiang YU, Min WANG, Xiuquan JIA, Fang LU, Jie XU, Advances in selective catalytic transformation of ployols to value-added chemicals, Chinese Journal of Catalysis, 2013, 34, 3, 492

    CrossRef

  63. 63
    Elise B. Fox, L. Taylor Smith, Tyler K. Williamson, Sarah E. Kendrick, Aging Effects on the Properties of Imidazolium-, Quaternary Ammonium-, Pyridinium-, and Pyrrolidinium-Based Ionic Liquids Used in Fuel and Energy Production, Energy & Fuels, 2013, 27, 11, 6355

    CrossRef

  64. 64
    Charles K. Westbrook, Biofuels Combustion*, Annual Review of Physical Chemistry, 2013, 64, 1, 201

    CrossRef

  65. 65
    Guanhong Zhao, Mingyuan Zheng, Junying Zhang, Aiqin Wang, Tao Zhang, Catalytic Conversion of Concentrated Glucose to Ethylene Glycol with Semicontinuous Reaction System, Industrial & Engineering Chemistry Research, 2013, 52, 28, 9566

    CrossRef

  66. 66
    Dong Shen Tong, Xi Xia, Xi Ping Luo, Lin Mei Wu, Chun Xiang Lin, Wei Hua Yu, Chun Hui Zhou, Zhe Ke Zhong, Catalytic hydrolysis of cellulose to reducing sugar over acid-activated montmorillonite catalysts, Applied Clay Science, 2013, 74, 147

    CrossRef

  67. 67
    Z. Conrad Zhang, Catalytic transformation of carbohydrates and lignin in ionic liquids, Wiley Interdisciplinary Reviews: Energy and Environment, 2013, 2, 6
  68. 68
    Haixin Guo, Youfen Lian, Lulu Yan, Xinhua Qi, Richard Lee Smith, Cellulose-derived superparamagnetic carbonaceous solid acid catalyst for cellulose hydrolysis in an ionic liquid or aqueous reaction system, Green Chemistry, 2013, 15, 8, 2167

    CrossRef

  69. 69
    I-Jung Kuo, Norihiro Suzuki, Yusuke Yamauchi, Kevin C.-W. Wu, Cellulose-to-HMF conversion using crystalline mesoporous titania and zirconia nanocatalysts in ionic liquid systems, RSC Adv., 2013, 3, 6, 2028

    CrossRef

  70. 70
    Agnieszka Brandt, John Gräsvik, Jason P. Hallett, Tom Welton, Deconstruction of lignocellulosic biomass with ionic liquids, Green Chemistry, 2013, 15, 3, 550

    CrossRef

  71. 71
    Deepak Verma, Rashmi Tiwari, Anil Kumar Sinha, Depolymerization of cellulosic feedstocks using magnetically separable functionalized graphene oxide, RSC Advances, 2013, 3, 32, 13265

    CrossRef

  72. 72
    Fujian Liu, Ranjan K. Kamat, Iman Noshadi, Daniel Peck, Richard S. Parnas, Anmin Zheng, Chenze Qi, Yao Lin, Depolymerization of crystalline cellulose catalyzed by acidic ionic liquids grafted onto sponge-like nanoporous polymers, Chemical Communications, 2013, 49, 76, 8456

    CrossRef

  73. 73
    Fujian Liu, Anmin Zheng, Iman Noshadi, Feng-Shou Xiao, Design and synthesis of hydrophobic and stable mesoporous polymeric solid acid with ultra strong acid strength and excellent catalytic activities for biomass transformation, Applied Catalysis B: Environmental, 2013, 136-137, 193

    CrossRef

  74. 74
    Kosuke Kuroda, Yukinobu Fukaya, Hiroyuki Ohno, Direct HPILC analysis of cellulose depolymerisation in ionic liquids, Analytical Methods, 2013, 5, 13, 3172

    CrossRef

  75. 75
    Masayuki Iguchi, Taku Michael Aida, Masaru Watanabe, Richard L. Smith, Dissolution and recovery of cellulose from 1-butyl-3-methylimidazolium chloride in presence of water, Carbohydrate Polymers, 2013, 92, 1, 651

    CrossRef

  76. 76
    Min Liu, Songyan Jia, Yanyan Gong, Chunshan Song, Xinwen Guo, Effective Hydrolysis of Cellulose into Glucose over Sulfonated Sugar-Derived Carbon in an Ionic Liquid, Industrial & Engineering Chemistry Research, 2013, 52, 24, 8167

    CrossRef

  77. 77
    Piera Demma Carà, Mario Pagliaro, Ahmed Elmekawy, David. R. Brown, Peter Verschuren, N. Raveendran Shiju, Gadi Rothenberg, Hemicellulose hydrolysis catalysed by solid acids, Catalysis Science & Technology, 2013, 3, 8, 2057

    CrossRef

  78. 78
    Hirokazu Kobayashi, Mizuho Yabushita, Tasuku Komanoya, Kenji Hara, Ichiro Fujita, Atsushi Fukuoka, High-Yielding One-Pot Synthesis of Glucose from Cellulose Using Simple Activated Carbons and Trace Hydrochloric Acid, ACS Catalysis, 2013, 3, 4, 581

    CrossRef

  79. 79
    Yanhua Wu, Fangna Gu, Guangwen Xu, Ziyi Zhong, Fabing Su, Hydrogenolysis of cellulose to C4–C7 alcohols over bi-functional CuO–MO/Al2O3 (M=Ce, Mg, Mn, Ni, Zn) catalysts coupled with methanol reforming reaction, Bioresource Technology, 2013, 137, 311

    CrossRef

  80. 80
    Guozhi Fan, Chongjing Liao, Tao Fang, Min Wang, Guangsen Song, Hydrolysis of cellulose catalyzed by sulfonated poly(styrene-co-divinylbenzene) in the ionic liquid 1-n-butyl-3-methylimidazolium bromide, Fuel Processing Technology, 2013, 116, 142

    CrossRef

  81. 81
    Yao-Bing Huang, Yao Fu, Hydrolysis of cellulose to glucose by solid acid catalysts, Green Chemistry, 2013, 15, 5, 1095

    CrossRef

  82. 82
    Inn Shi Tan, Man Kee Lam, Keat Teong Lee, Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production, Carbohydrate Polymers, 2013, 94, 1, 561

    CrossRef

  83. 83
    Michiel Dusselier, Pieter Van Wouwe, Annelies Dewaele, Ekaterina Makshina, Bert F. Sels, Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis, Energy & Environmental Science, 2013, 6, 5, 1415

    CrossRef

  84. 84
    Changbin Zhang, Huayu Wang, Fudong Liu, Lian Wang, Hong He, Magnetic core–shell Fe3O4@C-SO3H nanoparticle catalyst for hydrolysis of cellulose, Cellulose, 2013, 20, 1, 127

    CrossRef

  85. 85
    Ronald Carrasquillo-Flores, Mats Käldström, Ferdi Schüth, James A. Dumesic, Roberto Rinaldi, Mechanocatalytic Depolymerization of Dry (Ligno)cellulose As an Entry Process for High-Yield Production of Furfurals, ACS Catalysis, 2013, 3, 5, 993

    CrossRef

  86. 86
    Christian Abels, Frederike Carstensen, Matthias Wessling, Membrane processes in biorefinery applications, Journal of Membrane Science, 2013, 444, 285

    CrossRef

  87. 87
    Fang Yang, Gang Li, Peng Gao, Xiao-Na Lv, Xiaofeng Sun, Zhi-Hua Liu, Hongxian Fan, Mild Hydrothermal Degradation of Cotton Cellulose by using a Mixed-Metal-Oxide ZnO–ZrO2 Catalyst, Energy Technology, 2013, 1, 10
  88. 88
    Lu Li, Juan Xie, Shitao Yu, Zhongliang Su, Shiwei Liu, Fusheng Liu, Congxia Xie, Baoquan Zhang, Chenggang Zhang, N-terminal PEGylated cellulase: a high stability enzyme in 1-butyl-3-methylimidazolium chloride, Green Chemistry, 2013, 15, 6, 1624

    CrossRef

  89. 89
    Xianghong Qian, Jing Lei, Sumith Ranil Wickramasinghe, Novel polymeric solid acid catalysts for cellulose hydrolysis, RSC Advances, 2013, 3, 46, 24280

    CrossRef

  90. 90
    Johan Ahlkvist, Samikannu Ajaikumar, William Larsson, Jyri-Pekka Mikkola, One-pot catalytic conversion of Nordic pulp media into green platform chemicals, Applied Catalysis A: General, 2013, 454, 21

    CrossRef

  91. 91
    Bin Lai, Yi Zhao, Li-feng Yan, Preparation of 5-Hydroxymethylfurfural from Cellulose via Fast Depolymerization and Consecutively Catalytic Conversion, Chinese Journal of Chemical Physics, 2013, 26, 3, 355

    CrossRef

  92. 92
    Kiat Moon Lee, Gek Cheng Ngoh, Adeline Seak May Chua, Process optimization and performance evaluation on sequential ionic liquid dissolution–solid acid saccharification of sago waste, Bioresource Technology, 2013, 130, 1

    CrossRef

  93. 93
    Benjamin R. Caes, Thomas R. Van Oosbree, Fachuang Lu, John Ralph, Christos T. Maravelias, Ronald T. Raines, Simulated Moving Bed Chromatography: Separation and Recovery of Sugars and Ionic Liquid from Biomass Hydrolysates, ChemSusChem, 2013, 6, 11
  94. 94
    Yuanyuan Liu, Wenwen Xiao, Shuqian Xia, Peisheng Ma, SO3H-functionalized acidic ionic liquids as catalysts for the hydrolysis of cellulose, Carbohydrate Polymers, 2013, 92, 1, 218

    CrossRef

  95. 95
    El-Sayed R. E. Hassan, Fabrice Mutelet, Steve Pontvianne, Jean-Charles Moïse, Studies on the Dissolution of Glucose in Ionic Liquids and Extraction Using the Antisolvent Method, Environmental Science & Technology, 2013, 47, 6, 2809

    CrossRef

  96. 96
    Lipeng Zhou, Zhen Liu, Meiting Shi, Shanshan Du, Yunlai Su, Xiaomei Yang, Jie Xu, Sulfonated hierarchical H-USY zeolite for efficient hydrolysis of hemicellulose/cellulose, Carbohydrate Polymers, 2013, 98, 1, 146

    CrossRef

  97. 97
    Jaewon Jeong, Bora Kim, Seunghan Shin, Baekjin Kim, Jae-Soung Lee, Sang-Hyeup Lee, Jin Ku Cho, Synthesis and photo-polymerization of bio-based furanic compounds functionalized by 2-hydroxypropyl methacrylate group(s), Journal of Applied Polymer Science, 2013, 127, 4
  98. 98
    Hirokazu Kobayashi, Atsushi Fukuoka, Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass, Green Chemistry, 2013, 15, 7, 1740

    CrossRef

  99. 99
    Claudia Loerbroks, Roberto Rinaldi, Walter Thiel, The Electronic Nature of the 1,4-β-Glycosidic Bond and Its Chemical Environment: DFT Insights into Cellulose Chemistry, Chemistry - A European Journal, 2013, 19, 48
  100. 100
    Gang Yang, Evgeny A. Pidko, Emiel J. M. Hensen, The Mechanism of Glucose Isomerization to Fructose over Sn-BEA Zeolite: A Periodic Density Functional Theory Study, ChemSusChem, 2013, 6, 9
  101. 101
    Federica Zaccheria, Nicola Scotti, Marcello Marelli, Rinaldo Psaro, Nicoletta Ravasio, Unravelling the properties of supported copper oxide: can the particle size induce acidic behaviour?, Dalton Trans., 2013, 42, 5, 1319

    CrossRef

  102. 102
    Hirokazu Kobayashi, Atsushi Fukuoka, New and Future Developments in Catalysis, 2013,

    CrossRef

  103. 103
    Michael T. Keßler, Jackson D. Scholten, Martin H.G. Prechtl, New and Future Developments in Catalysis, 2013,

    CrossRef

  104. 104
    Marcus Rose, Peter Hausoul, Regina Palkovits, Producing Fuels and Fine Chemicals from Biomass Using Nanomaterials, 2013,

    CrossRef

  105. 105
    Jan C.J. Bart, Emanuele Gucciardi, Stefano Cavallaro, Biolubricants, 2013,

    CrossRef

  106. 106
    Elif Gürbüz, Jesse Q. Bond, James A. Dumesic, Yuriy Román-Leshkov, The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals, 2013,

    CrossRef

  107. 107
    Fabrizio Sibilla, Pablo Domínguez de María, The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals, 2013,

    CrossRef

  108. 108
    Lignocellulosic Biorefineries, 2013,

    CrossRef

  109. 109
    Ramakanta Sahu, Paresh Laxmikant Dhepe, A One-Pot Method for the Selective Conversion of Hemicellulose from Crop Waste into C5 Sugars and Furfural by Using Solid Acid Catalysts, ChemSusChem, 2012, 5, 4
  110. 110
    Zhen Liu, Haisong Wang, Bin Li, Chao Liu, Yijun Jiang, Guang Yu, Xindong Mu, Biocompatible magnetic cellulose–chitosan hybrid gel microspheres reconstituted from ionic liquids for enzyme immobilization, Journal of Materials Chemistry, 2012, 22, 30, 15085

    CrossRef

  111. 111
    Ananda S. Amarasekara, Bernard Wiredu, Brönsted Acidic Ionic Liquid 1-(1-Propylsulfonic)-3-methylimidazolium-Chloride Catalyzed Hydrolysisof D-Cellobiose in Aqueous Medium, International Journal of Carbohydrate Chemistry, 2012, 2012, 1

    CrossRef

  112. 112
    Jifeng Pang, Aiqin Wang, Mingyuan Zheng, Yanhua Zhang, Yanqiang Huang, Xiaowei Chen, Tao Zhang, Catalytic conversion of cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts, Green Chemistry, 2012, 14, 3, 614

    CrossRef

  113. 113
    Sen Li, Eika W. Qian, Tomohiro Shibata, Masaaki Hosomi, Catalytic Hydrothermal Saccharification of Rice Straw Using Mesoporous Silica-based Solid Acid Catalysts, Journal of the Japan Petroleum Institute, 2012, 55, 4, 250

    CrossRef

  114. 114
    Saikat Dutta, Catalytic materials that improve selectivity of biomass conversions, RSC Advances, 2012, 2, 33, 12575

    CrossRef

  115. 115
    Maud Benoit, Anthony Rodrigues, Karine De Oliveira Vigier, Elodie Fourré, Joël Barrault, Jean-Michel Tatibouët, François Jérôme, Combination of ball-milling and non-thermal atmospheric plasma as physical treatments for the saccharification of microcrystalline cellulose, Green Chemistry, 2012, 14, 8, 2212

    CrossRef

  116. 116
    Akio Kamimura, Tomoki Okagawa, Natsumi Oyama, Tamami Otsuka, Makoto Yoshimoto, Combination use of hydrophobic ionic liquids and LiCl as a good reaction system for the chemical conversion of cellulose to glucose, Green Chemistry, 2012, 14, 10, 2816

    CrossRef

  117. 117
    Weina Liu, Yucui Hou, Weize Wu, Shuhang Ren, Wenhua Wang, Complete conversion of cellulose to water soluble substances by pretreatment with ionic liquids, Korean Journal of Chemical Engineering, 2012, 29, 10, 1403

    CrossRef

  118. 118
    Hirokazu Kobayashi, Hidetoshi Ohta, Atsushi Fukuoka, Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis, Catalysis Science & Technology, 2012, 2, 5, 869

    CrossRef

  119. 119
    Kameh Tajvidi, Kristina Pupovac, Murhat Kükrek, Regina Palkovits, Copper-Based Catalysts for Efficient Valorization of Cellulose, ChemSusChem, 2012, 5, 11
  120. 120
    Philip Engel, Lea Hein, Antje C Spiess, Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis, Biotechnology for Biofuels, 2012, 5, 1, 77

    CrossRef

  121. 121
    Weiping Deng, Yanliang Wang, Qinghong Zhang, Ye Wang, Development of Bifunctional Catalysts for the Conversions of Cellulose or Cellobiose into Polyols and Organic Acids in Water, Catalysis Surveys from Asia, 2012, 16, 2, 91

    CrossRef

  122. 122
    William R. H. Wright, Regina Palkovits, Development of Heterogeneous Catalysts for the Conversion of Levulinic Acid to γ-Valerolactone, ChemSusChem, 2012, 5, 9
  123. 123
    Oz M. Gazit, Alexander Katz, Dialkylimidazolium Ionic Liquids Hydrolyze Cellulose Under Mild Conditions, ChemSusChem, 2012, 5, 8
  124. 124
    Saikat Dutta, Sudipta De, Md. Imteyaz Alam, Mahdi M. Abu-Omar, Basudeb Saha, Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts, Journal of Catalysis, 2012, 288, 8

    CrossRef

  125. 125
    Ligang Wei, Kunlan Li, Yingchong Ma, Xiang Hou, Dissolving lignocellulosic biomass in a 1-butyl-3-methylimidazolium chloride–water mixture, Industrial Crops and Products, 2012, 37, 1, 227

    CrossRef

  126. 126
    Agnès Martin-Mingot, Karine De Oliveira Vigier, François Jérôme, Sébastien Thibaudeau, High efficiency of superacid HF–SbF5 for the selective decrystallization–depolymerization of cellulose to glucose, Organic & Biomolecular Chemistry, 2012, 10, 13, 2521

    CrossRef

  127. 127
    Silvia Morales-delaRosa, Jose M. Campos-Martin, Jose L.G. Fierro, High glucose yields from the hydrolysis of cellulose dissolved in ionic liquids, Chemical Engineering Journal, 2012, 181-182, 538

    CrossRef

  128. 128
    Kun Dong, Suojiang Zhang, Hydrogen Bonds: A Structural Insight into Ionic Liquids, Chemistry - A European Journal, 2012, 18, 10
  129. 129
    Agnieszka M. Ruppert, Kamil Weinberg, Regina Palkovits, Hydrogenolyse goes Bio: Von Kohlenhydraten und Zuckeralkoholen zu Plattformchemikalien, Angewandte Chemie, 2012, 124, 11
  130. 130
    Agnieszka M. Ruppert, Kamil Weinberg, Regina Palkovits, Hydrogenolysis Goes Bio: From Carbohydrates and Sugar Alcohols to Platform Chemicals, Angewandte Chemie International Edition, 2012, 51, 11
  131. 131
    Haixin Guo, Xinhua Qi, Luyang Li, Richard L. Smith, Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid, Bioresource Technology, 2012, 116, 355

    CrossRef

  132. 132
    Nanfang Wang, Yulin Jian, Suqin Liu, Younian Liu, Kelong Huang, Influence of acetated-based and bromo-based ionic liquids treatment on wool dyeing with acid blue 7, Journal of Applied Polymer Science, 2012, 123, 6
  133. 133
    Chun-Zhao Liu, Feng Wang, Amanda R. Stiles, Chen Guo, Ionic liquids for biofuel production: Opportunities and challenges, Applied Energy, 2012, 92, 406

    CrossRef

  134. 134
    JinXing Long, XueHui Li, LeFu Wang, Ning Zhang, Ionic liquids: Efficient solvent and medium for the transformation of renewable lignocellulose, Science China Chemistry, 2012, 55, 8, 1500

    CrossRef

  135. 135
    Marcus Rose, Regina Palkovits, Isosorbide as a Renewable Platform chemical for Versatile Applications—Quo Vadis?, ChemSusChem, 2012, 5, 1
  136. 136
    Zehui Zhang, Weiqi Wang, Xiangyue Liu, Qian Wang, Weixue Li, Haibo Xie, Zongbao K. Zhao, Kinetic study of acid-catalyzed cellulose hydrolysis in 1-butyl-3-methylimidazolium chloride, Bioresource Technology, 2012, 112, 151

    CrossRef

  137. 137
    Gang Yang, Evgeny A. Pidko, Emiel J.M. Hensen, Mechanism of Brønsted acid-catalyzed conversion of carbohydrates, Journal of Catalysis, 2012, 295, 122

    CrossRef

  138. 138
    Lu Li, Juan Xie, Shitao Yu, Zhongliang Su, Shiwei Liu, Fusheng Liu, Congxia Xie, Baoquan Zhang, Novel compatible system of [C2OHmim][OAc]-cellulases for the in situ hydrolysis of lignocellulosic biomass, RSC Advances, 2012, 2, 31, 11712

    CrossRef

  139. 139
    Evgeny A. Pidko, Volkan Degirmenci, Emiel J. M. Hensen, On the Mechanism of Lewis Acid Catalyzed Glucose Transformations in Ionic Liquids, ChemCatChem, 2012, 4, 9
  140. 140
    Zhong Sun, Mingxing Cheng, Huacheng Li, Tian Shi, Mengjia Yuan, Xiaohong Wang, Zijiang Jiang, One-pot depolymerization of cellulose into glucose and levulinic acid by heteropolyacid ionic liquid catalysis, RSC Advances, 2012, 2, 24, 9058

    CrossRef

  141. 141
    Yu Yang, Xi Xiang, Dongmei Tong, Changwei Hu, Mahdi M. Abu-Omar, One-pot synthesis of 5-hydroxymethylfurfural directly from starch over <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>SO</mml:mtext></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>-</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:math>/ZrO2–Al2O3 solid catalyst, Bioresource Technology, 2012, 116, 302

    CrossRef

  142. 142
    Courtney A. Ober, Ram B. Gupta, pH Control of Ionic Liquids with Carbon Dioxide and Water: 1-Ethyl-3-methylimidazolium Acetate, Industrial & Engineering Chemistry Research, 2012, 51, 6, 2524

    CrossRef

  143. 143
    Weiping Deng, Qinghong Zhang, Ye Wang, Polyoxometalates as efficient catalysts for transformations of cellulose into platform chemicals, Dalton Transactions, 2012, 41, 33, 9817

    CrossRef

  144. 144
    Katja Lappalainen, Johanna Kärkkäinen, Johanna Panula-Perälä, Marja Lajunen, Preparation of water-soluble starch oligomers from variable starch species in 1-allyl-3-methylimidazolium chloride, Starch - Stärke, 2012, 64, 4
  145. 145
    Ngoc Lan Mai, Nam Trung Nguyen, Jin-Il Kim, Hyuk-Min Park, Sung-Kyun Lee, Yoon-Mo Koo, Recovery of ionic liquid and sugars from hydrolyzed biomass using ion exclusion simulated moving bed chromatography, Journal of Chromatography A, 2012, 1227, 67

    CrossRef

  146. 146
    Dongli An, Aihua Ye, Weiping Deng, Qinghong Zhang, Ye Wang, Selective Conversion of Cellobiose and Cellulose into Gluconic Acid in Water in the Presence of Oxygen, Catalyzed by Polyoxometalate-Supported Gold Nanoparticles, Chemistry - A European Journal, 2012, 18, 10
  147. 147
    Simon J. Haward, Vivek Sharma, Craig P. Butts, Gareth H. McKinley, Sameer S. Rahatekar, Shear and Extensional Rheology of Cellulose/Ionic Liquid Solutions, Biomacromolecules, 2012, 13, 5, 1688

    CrossRef

  148. 148
    Jinxing Long, Xuehui Li, Bin Guo, Furong Wang, Yinghao Yu, Lefu Wang, Simultaneous delignification and selective catalytic transformation of agricultural lignocellulose in cooperative ionic liquid pairs, Green Chemistry, 2012, 14, 7, 1935

    CrossRef

  149. 149
    Niklas Meine, Roberto Rinaldi, Ferdi Schüth, Solvent-Free Catalytic Depolymerization of Cellulose to Water-Soluble Oligosaccharides, ChemSusChem, 2012, 5, 8
  150. 150
    Stijn Van de Vyver, Jan Geboers, Wouter Schutyser, Michiel Dusselier, Pierre Eloy, Emmie Dornez, Jin Won Seo, Christophe M. Courtin, Eric M. Gaigneaux, Pierre A. Jacobs, Bert F. Sels, Tuning the Acid/Metal Balance of Carbon Nanofiber-Supported Nickel Catalysts for Hydrolytic Hydrogenation of Cellulose, ChemSusChem, 2012, 5, 8
  151. 151
    Haile Cai, Changzhi Li, Aiqin Wang, Guoliang Xu, Tao Zhang, Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid, Applied Catalysis B: Environmental, 2012, 123-124, 333

    CrossRef

  152. 152
    W. Matthew Reichert, Arsalan Mirjafari, James H. Davis, Taylor Goodie, Nathan G. Williams, Vivian Ho, Matthew Yoder, Maelynn La, Ionic Liquids: Science and Applications, 2012,

    CrossRef

  153. 153
    Gabriele Centi, Paola Lanzafame, Siglinda Perathoner, Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials, Catalysis Today, 2011, 167, 1, 14

    CrossRef

  154. 154
    Tasuku Komanoya, Hirokazu Kobayashi, Kenji Hara, Wang-Jae Chun, Atsushi Fukuoka, Catalysis and characterization of carbon-supported ruthenium for cellulose hydrolysis, Applied Catalysis A: General, 2011, 407, 1-2, 188

    CrossRef

  155. 155
    Chun-Hui Zhou, Xi Xia, Chun-Xiang Lin, Dong-Shen Tong, Jorge Beltramini, Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels, Chemical Society Reviews, 2011, 40, 11, 5588

    CrossRef

  156. 156
    Blair J. Cox, Songyan Jia, Z. Conrad Zhang, John G. Ekerdt, Catalytic degradation of lignin model compounds in acidic imidazolium based ionic liquids: Hammett acidity and anion effects, Polymer Degradation and Stability, 2011, 96, 4, 426

    CrossRef

  157. 157
    Stijn Van de Vyver, Joice Thomas, Jan Geboers, Stefaan Keyzer, Mario Smet, Wim Dehaen, Pierre A. Jacobs, Bert F. Sels, Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s, Energy & Environmental Science, 2011, 4, 9, 3601

    CrossRef

  158. 158
    George Akiyama, Ryotaro Matsuda, Hiroshi Sato, Masaki Takata, Susumu Kitagawa, Cellulose Hydrolysis by a New Porous Coordination Polymer Decorated with Sulfonic Acid Functional Groups, Advanced Materials, 2011, 23, 29
  159. 159
    Flora Chambon, Franck Rataboul, Catherine Pinel, Amandine Cabiac, Emmanuelle Guillon, Nadine Essayem, Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid, Applied Catalysis B: Environmental, 2011, 105, 1-2, 171

    CrossRef

  160. 160
    Regina Palkovits, Cellulose und heterogene Katalyse – Eine Kombination mit Zukunft, Cellulose and Heterogeous Catalysis – A Combination for Future, Chemie Ingenieur Technik, 2011, 83, 4
  161. 161
    Marcus Rose, Regina Palkovits, Cellulose-Based Sustainable Polymers: State of the Art and Future Trends, Macromolecular Rapid Communications, 2011, 32, 17
  162. 162
    Wei-Hang Hsu, Yin-Ying Lee, Wun-Huei Peng, Kevin C.-W. Wu, Cellulosic conversion in ionic liquids (ILs): Effects of H2O/cellulose molar ratios, temperatures, times, and different ILs on the production of monosaccharides and 5-hydroxymethylfurfural (HMF), Catalysis Today, 2011, 174, 1, 65

    CrossRef

  163. 163
    Jan A. Geboers, Stijn Van de Vyver, Roselinde Ooms, Beau Op de Beeck, Pierre A. Jacobs, Bert F. Sels, Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls, Catalysis Science & Technology, 2011, 1, 5, 714

    CrossRef

  164. 164
    Mingxing Cheng, Tian Shi, Hongyu Guan, Shengtian Wang, Xiaohong Wang, Zijiang Jiang, Clean production of glucose from polysaccharides using a micellar heteropolyacid as a heterogeneous catalyst, Applied Catalysis B: Environmental, 2011, 107, 1-2, 104

    CrossRef

  165. 165
    Xiaobing Xi, Taiwei Dong, Gao Li, Yong Cui, Controlled structures of a 1D chiral metallosalen polymer by photo- and solvent-induced partial depolymerization, Chemical Communications, 2011, 47, 13, 3831

    CrossRef

  166. 166
    Hirokazu Kobayashi, Tasuku Komanoya, Samar K. Guha, Kenji Hara, Atsushi Fukuoka, Conversion of cellulose into renewable chemicals by supported metal catalysis, Applied Catalysis A: General, 2011, 409-410, 13

    CrossRef

  167. 167
    Shunmugavel Saravanamurugan, Olivier Nguyen Van Buu, Anders Riisager, Conversion of Mono- and Disaccharides to Ethyl Levulinate and Ethyl Pyranoside with Sulfonic Acid-Functionalized Ionic Liquids, ChemSusChem, 2011, 4, 6
  168. 168
    Ananda S. Amarasekara, Bernard Wiredu, Degradation of Cellulose in Dilute Aqueous Solutions of Acidic Ionic Liquid 1-(1-Propylsulfonic)-3-methylimidazolium Chloride, andp-Toluenesulfonic Acid at Moderate Temperatures and Pressures, Industrial & Engineering Chemistry Research, 2011, 50, 21, 12276

    CrossRef

  169. 169
    Feng Jiang, Qingjun Zhu, Ding Ma, Xiumei Liu, Xiuwen Han, Direct conversion and NMR observation of cellulose to glucose and 5-hydroxymethylfurfural (HMF) catalyzed by the acidic ionic liquids, Journal of Molecular Catalysis A: Chemical, 2011, 334, 1-2, 8

    CrossRef

  170. 170
    Sen LI, Eika W. QIAN, Direct Saccharification of Rice Straw Using a Solid Acid Catalyst, Journal of the Japan Institute of Energy, 2011, 90, 11, 1065

    CrossRef

  171. 171
    Weiping Deng, Mi Liu, Qinghong Zhang, Ye Wang, Direct transformation of cellulose into methyl and ethyl glucosides in methanol and ethanol media catalyzed by heteropolyacids, Catalysis Today, 2011, 164, 1, 461

    CrossRef

  172. 172
    Joshua Potvin, Erin Sorlien, Jessica Hegner, Brenton DeBoef, Brett L. Lucht, Effect of NaCl on the conversion of cellulose to glucose and levulinic acid via solid supported acid catalysis, Tetrahedron Letters, 2011, 52, 44, 5891

    CrossRef

  173. 173
    Regina Palkovits, Kameh Tajvidi, Agnieszka M. Ruppert, Joanna Procelewska, Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols, Chem. Commun., 2011, 47, 1, 576

    CrossRef

  174. 174
    Yukinobu Fukaya, Atsushi Tsukamoto, Kosuke Kuroda, Hiroyuki Ohno, High performance “ionic liquid” chromatography, Chemical Communications, 2011, 47, 7, 1994

    CrossRef

  175. 175
    Da-ming Lai, Li Deng, Qing-xiang Guo, Yao Fu, Hydrolysis of biomass by magnetic solid acid, Energy & Environmental Science, 2011, 4, 9, 3552

    CrossRef

  176. 176
    Da-ming Lai, Li Deng, Jiang Li, Bing Liao, Qing-xiang Guo, Yao Fu, Hydrolysis of Cellulose into Glucose by Magnetic Solid Acid, ChemSusChem, 2011, 4, 1
  177. 177
    J. Tian, C. Fang, M. Cheng, X. Wang, Hydrolysis of Cellulose over CsxH3–xPW12O40 (X = 1–3) Heteropoly Acid Catalysts, Chemical Engineering & Technology, 2011, 34, 3
  178. 178
    Xiujuan Zhong, Zhiping Liu, Dapeng Cao, Improved Classical United-Atom Force Field for Imidazolium-Based Ionic Liquids: Tetrafluoroborate, Hexafluorophosphate, Methylsulfate, Trifluoromethylsulfonate, Acetate, Trifluoroacetate, and Bis(trifluoromethylsulfonyl)amide, The Journal of Physical Chemistry B, 2011, 115, 33, 10027

    CrossRef

  179. 179
    Roberto Rinaldi, Instantaneous dissolution of cellulose in organic electrolyte solutions, Chem. Commun., 2011, 47, 1, 511

    CrossRef

  180. 180
    Sérgio Lima, Margarida M. Antunes, Martyn Pillinger, Anabela A. Valente, Ionic Liquids as Tools for the Acid-Catalyzed Hydrolysis/Dehydration of Saccharides to Furanic Aldehydes, ChemCatChem, 2011, 3, 11
  181. 181
    Annegret Stark, Ionic liquids in the biorefinery: a critical assessment of their potential, Energy Environ. Sci., 2011, 4, 1, 19

    CrossRef

  182. 182
    Sudipta De, Saikat Dutta, Basudeb Saha, Microwave assisted conversion of carbohydrates and biopolymers to 5-hydroxymethylfurfural with aluminium chloride catalyst in water, Green Chemistry, 2011, 13, 10, 2859

    CrossRef

  183. 183
    Jinxing Long, Bin Guo, Xuehui Li, Yanbin Jiang, Furong Wang, Shik Chi Tsang, Lefu Wang, Kai Man K. Yu, One step catalytic conversion of cellulose to sustainable chemicals utilizing cooperative ionic liquid pairs, Green Chemistry, 2011, 13, 9, 2334

    CrossRef

  184. 184
    MeiXuan Tan, Lan Zhao, Yugen Zhang, Production of 5-hydroxymethyl furfural from cellulose in CrCl2/Zeolite/BMIMCl system, Biomass and Bioenergy, 2011, 35, 3, 1367

    CrossRef

  185. 185
    Qinghua Zhang, Shiguo Zhang, Youquan Deng, Recent advances in ionic liquid catalysis, Green Chemistry, 2011, 13, 10, 2619

    CrossRef

  186. You have free access to this content186
    Stijn Van de Vyver, Jan Geboers, Pierre A. Jacobs, Bert F. Sels, Recent Advances in the Catalytic Conversion of Cellulose, ChemCatChem, 2011, 3, 1
  187. 187
    Xiaoyang Guo, Anyuan Yin, Xiaodong Guo, Xiuying Guo, Weilin Dai, Kangnian Fan, Robust CoAl Alloy: Highly Active, Reusable and Green Catalyst in the Hydrogenolysis of Glycerol, Chinese Journal of Chemistry, 2011, 29, 8
  188. 188
    Yoshiyuki Ogasawara, Shintaro Itagaki, Kazuya Yamaguchi, Noritaka Mizuno, Saccharification of Natural Lignocellulose Biomass and Polysaccharides by Highly Negatively Charged Heteropolyacids in Concentrated Aqueous Solution, ChemSusChem, 2011, 4, 4
  189. 189
    Benjamin R. Caes, Joseph B. Binder, Jacqueline J. Blank, Ronald T. Raines, Separable fluorous ionic liquids for the dissolution and saccharification of cellulose, Green Chemistry, 2011, 13, 10, 2719

    CrossRef

  190. 190
    Weina Liu, Yucui Hou, Weize Wu, Shuhang Ren, Yan Jing, Baogang Zhang, Solubility of Glucose in Ionic Liquid + Antisolvent Mixtures, Industrial & Engineering Chemistry Research, 2011, 50, 11, 6952

    CrossRef

  191. 191
    Pedro Lozano, Berenice Bernal, Juana M. Bernal, Mathieu Pucheault, Michel Vaultier, Stabilizing immobilized cellulase by ionic liquids for saccharification of cellulose solutions in 1-butyl-3-methylimidazolium chloride, Green Chemistry, 2011, 13, 6, 1406

    CrossRef

  192. 192
    Maria Möller , Peter Nilges , Falk Harnisch, Uwe Schröder, Subcritical Water as Reaction Environment: Fundamentals of Hydrothermal Biomass Transformation, ChemSusChem, 2011, 4, 5
  193. 193
    Tim Ståhlberg, Wenjing Fu, John M Woodley, Anders Riisager, Synthesis of 5-(Hydroxymethyl)furfural in Ionic Liquids: Paving the Way to Renewable Chemicals, ChemSusChem, 2011, 4, 4
  194. 194
    Hirokazu Kobayashi, Yukiko Ito, Tasuku Komanoya, Yuto Hosaka, Paresh L. Dhepe, Koji Kasai, Kenji Hara, Atsushi Fukuoka, Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts, Green Chem., 2011, 13, 2, 326

    CrossRef

  195. 195
    Päivi Mäki-Arvela, Tapio Salmi, Bjarne Holmbom, Stefan Willför, Dmitry Yu. Murzin, Synthesis of Sugars by Hydrolysis of Hemicelluloses- A Review, Chemical Reviews, 2011, 111, 9, 5638

    CrossRef

  196. 196
    Darryn W Rackemann, William OS Doherty, The conversion of lignocellulosics to levulinic acid, Biofuels, Bioproducts and Biorefining, 2011, 5, 2
  197. 197
    Barmak Mostofian, Jeremy C. Smith, Xiaolin Cheng, The solvation structures of cellulose microfibrils in ionic liquids, Interdisciplinary Sciences: Computational Life Sciences, 2011, 3, 4, 308

    CrossRef

  198. 198
    Gabriella Butera, Claudio De Pasquale, Antonella Maccotta, Giuseppe Alonzo, Pellegrino Conte, Thermal transformation of micro-crystalline cellulose in phosphoric acid, Cellulose, 2011, 18, 6, 1499

    CrossRef

  199. 199
    Hongyang Ma, Benjamin S. Hsiao, Benjamin Chu, Thin-film nanofibrous composite membranes containing cellulose or chitin barrier layers fabricated by ionic liquids, Polymer, 2011, 52, 12, 2594

    CrossRef

  200. 200
    Ken-ichi Shimizu, Atsushi Satsuma, Toward a rational control of solid acid catalysis for green synthesis and biomass conversion, Energy & Environmental Science, 2011, 4, 9, 3140

    CrossRef

  201. 201
    Roger A. Sheldon, Utilisation of biomass for sustainable fuels and chemicals: Molecules, methods and metrics, Catalysis Today, 2011, 167, 1, 3

    CrossRef

  202. 202
    Ning Sun, Héctor Rodríguez, Mustafizur Rahman, Robin D. Rogers, Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass?, Chem. Commun., 2011, 47, 5, 1405

    CrossRef

  203. 203
    Yanhua Zhang, Aiqin Wang, Tao Zhang, A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol, Chem. Commun., 2010, 46, 6, 862

    CrossRef

  204. 204
    Paresh Laxmikant Dhepe, Ramakanta Sahu, A solid-acid-based process for the conversion of hemicellulose, Green Chemistry, 2010, 12, 12, 2153

    CrossRef

  205. 205
    Weiping Deng, Mi Liu, Qinghong Zhang, Xuesong Tan, Ye Wang, Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures, Chemical Communications, 2010, 46, 15, 2668

    CrossRef

  206. 206
    Roberto Rinaldi, Philip Engel, Jochen Büchs, Antje C. Spiess, Ferdi Schüth, An Integrated Catalytic Approach to Fermentable Sugars from Cellulose, ChemSusChem, 2010, 3, 10
  207. 207
    Rafael Menegassi de Almeida , Jianrong Li, Christian Nederlof, Paul O'Connor, Michiel Makkee, Jacob A. Moulijn, Cellulose Conversion to Isosorbide in Molten Salt hydrate Media, ChemSusChem, 2010, 3, 3
  208. 208
    Songyan Jia, Blair J. Cox, Xinwen Guo, Z. Conrad Zhang, John G. Ekerdt, Cleaving the β[BOND]O[BOND]4 Bonds of Lignin Model Compounds in an Acidic Ionic Liquid, 1-H-3-Methylimidazolium Chloride: An Optional Strategy for the Degradation of Lignin, ChemSusChem, 2010, 3, 9
  209. 209
    Jessica Hegner, Kyle C. Pereira, Brenton DeBoef, Brett L. Lucht, Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis, Tetrahedron Letters, 2010, 51, 17, 2356

    CrossRef

  210. 210
    Yinghuai Zhu, Zhen Ning Kong, Ludger Paul Stubbs, Huang Lin, Shoucang Shen, Eric V. Anslyn, John A. Maguire, Conversion of Cellulose to Hexitols Catalyzed by Ionic Liquid-Stabilized Ruthenium Nanoparticles and a Reversible Binding Agent, ChemSusChem, 2010, 3, 1
  211. 211
    Ângelo C. Salvador, Mickael da C. Santos, Jorge A. Saraiva, Effect of the ionic liquid [bmim]Cl and high pressure on the activity of cellulase, Green Chemistry, 2010, 12, 4, 632

    CrossRef

  212. 212
    J. B. Binder, R. T. Raines, Fermentable sugars by chemical hydrolysis of biomass, Proceedings of the National Academy of Sciences, 2010, 107, 10, 4516

    CrossRef

  213. 213
    Yong Liu, Harun Tüysüz, Chun-Jiang Jia, Manfred Schwickardi, Roberto Rinaldi, An-Hui Lu, Wolfgang Schmidt, Ferdi Schüth, From glycerol to allyl alcohol: iron oxide catalyzed dehydration and consecutive hydrogen transfer, Chemical Communications, 2010, 46, 8, 1238

    CrossRef

  214. You have free access to this content214
    Caio Tagusagawa, Atsushi Takagaki, Ai Iguchi, Kazuhiro Takanabe, Junko N. Kondo, Kohki Ebitani, Shigenobu Hayashi, Takashi Tatsumi, Kazunari Domen, Highly Active Mesoporous Nb–W Oxide Solid-Acid Catalyst, Angewandte Chemie International Edition, 2010, 49, 6
  215. 215
    Caio Tagusagawa, Atsushi Takagaki, Ai Iguchi, Kazuhiro Takanabe, Junko N. Kondo, Kohki Ebitani, Shigenobu Hayashi, Takashi Tatsumi, Kazunari Domen, Highly Active Mesoporous Nb–W Oxide Solid-Acid Catalyst, Angewandte Chemie, 2010, 122, 6
  216. 216
    Regina Palkovits, Kameh Tajvidi, Joanna Procelewska, Roberto Rinaldi, Agnieszka Ruppert, Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts, Green Chemistry, 2010, 12, 6, 972

    CrossRef

  217. 217
    Juan Tian, Jianghua Wang, Shun Zhao, Caiyun Jiang, Xia Zhang, Xiaohong Wang, Hydrolysis of cellulose by the heteropoly acid H3PW12O40, Cellulose, 2010, 17, 3, 587

    CrossRef

  218. 218
    Jifeng Pang, Aiqin Wang, Mingyuan Zheng, Tao Zhang, Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures, Chemical Communications, 2010, 46, 37, 6935

    CrossRef

  219. 219
    Sandra M. Hick, Carolin Griebel, David T. Restrepo, Joshua H. Truitt, Eric J. Buker, Caroline Bylda, Richard G. Blair, Mechanocatalysis for biomass-derived chemicals and fuels, Green Chemistry, 2010, 12, 3, 468

    CrossRef

  220. 220
    Nicolas Villandier, Avelino Corma, One pot catalytic conversion of cellulose into biodegradable surfactants, Chemical Communications, 2010, 46, 24, 4408

    CrossRef

  221. 221
    Prous Science Award: K. Müller / Sofja Kovalevskaja Award: R. Rinaldi, Angewandte Chemie International Edition, 2010, 49, 46
  222. 222
    Prous-Science-Preis für K. Müller / Sofja-Kovalevskaja-Preis für R. Rinaldi, Angewandte Chemie, 2010, 122, 46
  223. 223
    Timothy C. R. Brennan, Supratim Datta, Harvey W. Blanch, Blake A. Simmons, Bradley M. Holmes, Recovery of Sugars from Ionic Liquid Biomass Liquor by Solvent Extraction, BioEnergy Research, 2010, 3, 2, 123

    CrossRef

  224. 224
    Igor A. Ignatyev, Charlie Van Doorslaer, Pascal G. N. Mertens, Koen Binnemans, Dirk E. De Vos, Reductive Splitting of Cellulose in the Ionic Liquid 1-Butyl-3-Methylimidazolium Chloride, ChemSusChem, 2010, 3, 1
  225. 225
    Thorsten vom Stein, Philipp Grande, Fabrizio Sibilla, Ulrich Commandeur, Rainer Fischer, Walter Leitner, Pablo Domínguez de María, Salt-assisted organic-acid-catalyzed depolymerization of cellulose, Green Chemistry, 2010, 12, 10, 1844

    CrossRef

  226. You have free access to this content226
    Stijn Van de Vyver, Jan Geboers, Michiel Dusselier, Hans Schepers, Tom Vosch, Liang Zhang, Gustaaf Van Tendeloo, Pierre A. Jacobs, Bert F. Sels, Selective Bifunctional Catalytic Conversion of Cellulose over Reshaped Ni Particles at the Tip of Carbon Nanofibers, ChemSusChem, 2010, 3, 6
  227. 227
    Li-Ning Ding, Ai-Qin Wang, Ming-Yuan Zheng, Tao Zhang, Selective Transformation of Cellulose into Sorbitol by Using a Bifunctional Nickel Phosphide Catalyst, ChemSusChem, 2010, 3, 7
  228. 228
    Samantha M. Payne, Francesca M. Kerton, Solubility of bio-sourced feedstocks in ‘green’ solvents, Green Chemistry, 2010, 12, 9, 1648

    CrossRef

  229. 229
    Stijn Van de Vyver, Li Peng, Jan Geboers, Hans Schepers, Filip de Clippel, Cedric J. Gommes, Bart Goderis, Pierre A. Jacobs, Bert F. Sels, Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose, Green Chemistry, 2010, 12, 9, 1560

    CrossRef

  230. 230
    Yugen Zhang, Jin Young Gerentt Chan, Sustainable chemistry: imidazolium salts in biomass conversion and CO2fixation, Energy Environ. Sci., 2010, 3, 4, 408

    CrossRef

  231. 231
    Hisanori Watanabe, The study of factors influencing the depolymerisation of cellulose using a solid catalyst in ionic liquids, Carbohydrate Polymers, 2010, 80, 4, 1168

    CrossRef

  232. 232
    Yoshinao Nakagawa, Keiichi Tomishige, Total hydrogenation of furan derivatives over silica-supported Ni–Pd alloy catalyst, Catalysis Communications, 2010, 12, 3, 154

    CrossRef

  233. You have free access to this content233
    Ming-Yuan Zheng, Ai-Qin Wang, Na Ji, Ji-Feng Pang, Xiao-Dong Wang, Tao Zhang, Transition Metal–Tungsten Bimetallic Catalysts for the Conversion of Cellulose into Ethylene Glycol, ChemSusChem, 2010, 3, 1
  234. You have free access to this content234
    Hirokazu Kobayashi, Tasuku Komanoya , Kenji Hara, Atsushi Fukuoka, Water-Tolerant Mesoporous-Carbon-Supported Ruthenium Catalysts for the Hydrolysis of Cellulose to Glucose, ChemSusChem, 2010, 3, 4
  235. 235
    Roberto Rinaldi, Niklas Meine, Julia vom Stein, Regina Palkovits, Ferdi Schüth, Which Controls the Depolymerization of Cellulose in Ionic Liquids: The Solid Acid Catalyst or Cellulose?, ChemSusChem, 2010, 3, 2
  236. 236
    Cellulose Science and Technology, 2010,

    CrossRef

  237. 237
    S.P.S. Chundawat, V. Balan, L. Da costa Sousa, B.E. Dale, Bioalcohol Production, 2010,

    CrossRef

  238. 238
    Jan C.J. Bart, Natale Palmeri, Stefano Cavallaro, Biodiesel Science and Technology, 2010,

    CrossRef

  239. 239
    Atsushi Takagaki, Mika Ohara, Shun Nishimura, Kohki Ebitani, A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides, Chemical Communications, 2009, 41, 6276

    CrossRef

  240. 240
    Roberto Rinaldi, Ferdi Schüth, Acid Hydrolysis of Cellulose as the Entry Point into Biorefinery Schemes, ChemSusChem, 2009, 2, 12
  241. 241
    Carsten Sievers, Ildar Musin, Teresita Marzialetti, Mariefel B. Valenzuela Olarte, Pradeep K. Agrawal, Christopher W. Jones, Acid-Catalyzed Conversion of Sugars and Furfurals in an Ionic-Liquid Phase, ChemSusChem, 2009, 2, 7
  242. 242
    Roberto Rinaldi, Ferdi Schüth, Design of solid catalysts for the conversion of biomass, Energy & Environmental Science, 2009, 2, 6, 610

    CrossRef

  243. 243
    Changzhi Li, Zehui Zhang, Zongbao K. Zhao, Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation, Tetrahedron Letters, 2009, 50, 38, 5403

    CrossRef

  244. 244
    Atsushi Takagaki, Kohki Ebitani, Glucose to Value-added Chemicals: Anhydroglucose Formation by Selective Dehydration over Solid Acid Catalysts, Chemistry Letters, 2009, 38, 7, 650

    CrossRef

  245. 245
    Przemysław Kubisa, Ionic liquids as solvents for polymerization processes—Progress and challenges, Progress in Polymer Science, 2009, 34, 12, 1333

    CrossRef

  246. 246
    Yanlong Gu, Guangxing Li, Ionic Liquids-Based Catalysis with Solids: State of the Art, Advanced Synthesis & Catalysis, 2009, 351, 6
  247. 247
    Laurent Vanoye, Markus Fanselow, John D. Holbrey, Martin P. Atkins, Kenneth R. Seddon, Kinetic model for the hydrolysis of lignocellulosic biomass in the ionic liquid, 1-ethyl-3-methyl-imidazolium chloride, Green Chemistry, 2009, 11, 3, 390

    CrossRef

  248. 248
    Yu Su, Heather M. Brown, Xiwen Huang, Xiao-dong Zhou, James E. Amonette, Z. Conrad Zhang, Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical, Applied Catalysis A: General, 2009, 361, 1-2, 117

    CrossRef

  249. 249
    Zehui Zhang, Zongbao K. Zhao, Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid, Carbohydrate Research, 2009, 344, 15, 2069

    CrossRef

  250. 250
    Atsushi Fukuoka, Paresh L. Dhepe, Sustainable green catalysis by supported metal nanoparticles, The Chemical Record, 2009, 9, 4
  251. 251
    Ling Li, Lingjie Meng, Xiaoke Zhang, Chuanlong Fu, Qinghua Lu, The ionic liquid-associated synthesis of a cellulose/SWCNT complex and its remarkable biocompatibility, Journal of Materials Chemistry, 2009, 19, 22, 3612

    CrossRef

  252. 252
    Acid Hydrolysis of Cellulose and Hemicellulose,
  253. 253
    Shenghai Li, Suobo Zhang, Weihui Bi, Advanced Membrane Technology for Products Separation in Biorefinery,
  254. 254
    Roland Wengenmayr, Grüne Chance und Gefahr,
  255. 255
    Aiqin Wang, Changzhi Li, Mingyuan Zheng, Tao Zhang, Heterogeneous Catalysts for Biomass Conversion,
  256. 256
    Atsushi Takagaki, Shun Nishimura, Kohki Ebitani, Mechanistic Studies of Solid Acids and Base-Catalyzed Clean Technologies,
  257. 257
    David Grewell, Melissa Montalbo-Lomboy, Ultrasonics for Enhanced Fluid Biofuel Production,