SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Darón I. Freedberg, Philipp Selenko, Live Cell NMR, Annual Review of Biophysics, 2014, 43, 1, 171

    CrossRef

  2. 2
    Amir Goldbourt, Biomolecular magic-angle spinning solid-state NMR: recent methods and applications, Current Opinion in Biotechnology, 2013, 24, 4, 705

    CrossRef

  3. 3
    Gemma Comellas, Chad M. Rienstra, Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils, Annual Review of Biophysics, 2013, 42, 1, 515

    CrossRef

  4. 4
    Diletta Ami, Antonino Natalello, Marina Lotti, Silvia Maria Doglia, Why and how protein aggregation has to be studied in vivo, Microbial Cell Factories, 2013, 12, 1, 17

    CrossRef

  5. 5
    Marie Renault, Shane Pawsey, Martine P. Bos, Eline J. Koers, Deepak Nand, Ria Tommassen-van Boxtel, Melanie Rosay, Jan Tommassen, Werner E. Maas, Marc Baldus, Festkörper-NMR-Spektroskopie an zellulären Proben: verbesserte Empfindlichkeit durch dynamische Kernpolarisation, Angewandte Chemie, 2012, 124, 12
  6. 6
    Sina Reckel, Jakob J. Lopez, Frank Löhr, Clemens Glaubitz, Volker Dötsch, In-Cell Solid-State NMR as a Tool to Study Proteins in Large Complexes, ChemBioChem, 2012, 13, 4
  7. 7
    Marie Renault, Shane Pawsey, Martine P. Bos, Eline J. Koers, Deepak Nand, Ria Tommassen-van Boxtel, Melanie Rosay, Jan Tommassen, Werner E. Maas, Marc Baldus, Solid-State NMR Spectroscopy on Cellular Preparations Enhanced by Dynamic Nuclear Polarization, Angewandte Chemie International Edition, 2012, 51, 12
  8. 8
    Alba Espargaró, Raimon Sabate, Salvador Ventura, Thioflavin-S staining coupled to flow cytometry. A screening tool to detect in vivo protein aggregation, Molecular BioSystems, 2012, 8, 11, 2839

    CrossRef

  9. 9
    Alba Espargaró, Anna Villar-Piqué, Raimon Sabaté, Salvador Ventura, Yeast prions form infectious amyloid inclusion bodies in bacteria, Microbial Cell Factories, 2012, 11, 1, 89

    CrossRef

  10. 10
    Muralidhar Dasari, Alba Espargaro, Raimon Sabate, Juan Miguel Lopez del Amo, Uwe Fink, Gerlinde Grelle, Jan Bieschke, Salvador Ventura, Bernd Reif, Bacterial Inclusion Bodies of Alzheimer's Disease β-Amyloid Peptides Can Be Employed To Study Native-Like Aggregation Intermediate States, ChemBioChem, 2011, 12, 3
  11. 11
    Elena García-Fruitós, Raimon Sabate, Natalia S. de Groot, Antonio Villaverde, Salvador Ventura, Biological role of bacterial inclusion bodies: a model for amyloid aggregation, FEBS Journal, 2011, 278, 14
  12. 12
    Pietro Gatti-Lafranconi, Antonino Natalello, Diletta Ami, Silvia Maria Doglia, Marina Lotti, Concepts and tools to exploit the potential of bacterial inclusion bodies in protein science and biotechnology, FEBS Journal, 2011, 278, 14
  13. 13
    Garrick F. Taylor, Stephen P. Wood, Karsten Mörs, Clemens Glaubitz, Jörn M. Werner, Philip T. F. Williamson, Morphological Differences between β2-Microglobulin in Fibrils and Inclusion Bodies, ChemBioChem, 2011, 12, 4
  14. 14
    Sven J. Saupe, The [Het-s] prion of Podospora anserina and its role in heterokaryon incompatibility, Seminars in Cell & Developmental Biology, 2011, 22, 5, 460

    CrossRef

  15. 15
    Virginia Castillo, Ricardo Graña-Montes, Salvador Ventura, The aggregation properties of Escherichia coli proteins associated with their cellular abundance, Biotechnology Journal, 2011, 6, 6
  16. 16
    Laura Benkemoun, Frédérique Ness, Raimon Sabaté, Johanna Ceschin, Annick Breton, Corinne Clavé, Sven J. Saupe, Two structurally similar fungal prions efficiently cross-seed in vivo but form distinct polymers when coexpressed, Molecular Microbiology, 2011, 82, 6
  17. 17
    M. Elena Fernández-Tresguerres, Susana Moreno-Díaz de la Espina, Fátima Gasset-Rosa, Rafael Giraldo, A DNA-promoted amyloid proteinopathy in Escherichia coli, Molecular Microbiology, 2010, 77, 6
  18. 18
    Rafael Giraldo, Amyloid Assemblies: Protein Legos at a Crossroads in Bottom-Up Synthetic Biology, ChemBioChem, 2010, 11, 17
  19. 19
    Virginia Castillo, Alba Espargaró, Veronica Gordo, Josep Vendrell, Salvador Ventura, Deciphering the role of the thermodynamic and kinetic stabilities of SH3 domains on their aggregation inside bacteria, PROTEOMICS, 2010, 10, 23
  20. 20
    Yuichi Yoshimura, Kazumasa Sakurai, Young-Ho Lee, Takahisa Ikegami, Eri Chatani, Hironobu Naiki, Yuji Goto, Direct observation of minimum-sized amyloid fibrils using solution NMR spectroscopy, Protein Science, 2010, 19, 12
  21. 21
    Marie Renault, Abhishek Cukkemane, Marc Baldus, Festkörper-NMR-Spektroskopie an komplexen Biomolekülen, Angewandte Chemie, 2010, 122, 45
  22. 22
    Elena García-Fruitós, Antonio Villaverde, Friendly production of bacterial inclusion bodies, Korean Journal of Chemical Engineering, 2010, 27, 2, 385

    CrossRef

  23. 23
    Daniel Otzen, Functional amyloid, Prion, 2010, 4, 4, 256

    CrossRef

  24. 24
    Raimon Sabate, Natalia S. de Groot, Salvador Ventura, Protein folding and aggregation in bacteria, Cellular and Molecular Life Sciences, 2010, 67, 16, 2695

    CrossRef

  25. 25
    Marie Renault, Abhishek Cukkemane, Marc Baldus, Solid-State NMR Spectroscopy on Complex Biomolecules, Angewandte Chemie International Edition, 2010, 49, 45
  26. 26
    Anna Mitraki, 2010,

    CrossRef

  27. 27
    Lei Wang, Towards revealing the structure of bacterial inclusion bodies, Prion, 2009, 3, 3, 139

    CrossRef

  28. 28
    Anna Villar-Piqué, Salvador Ventura, Inclusion Bodies in the Study of Amyloid Aggregation,
  29. 29
    References,
  30. 30
    Christian Wasmer, Marielle Wälti, Yongli Chen, Lei Wang, Residue-Specific Structural Studies of Inclusion Bodies,
  31. 31
    Antonino Natalello, Diletta Ami, Silvia Maria Doglia, Structural Properties of Bacterial Inclusion Bodies,
  32. 32
    Wolfgang Hoyer, Henrike Heise, What Does Solid-State NMR Tell Us about Amyloid Structures?,