SEARCH

SEARCH BY CITATION

  • 1
    D. R. Dodds, R. A. Gross, Science 2007, 318, 12501251.
  • 2
    S. Mecking, Angew. Chem. 2004, 116, 10961104; Angew. Chem. Int. Ed. 2004, 43, 10781085.
  • 3
    A. Steinbüchel, Y. Doi, Biopolymers, Vol. 3a,b,4, Wiley-VCH, Weinheim, 2002.
  • 4
    A. H. Tullo, Chem. Eng. News 2008, 86, 2125.
  • 5
    U. Biermann, W. Friedt, S. Lang, W. Lühs, G. Machmüller, J. O. Metzger, M. Rüsch gen.  Klaas, H. J. Schäfer, M. P. Schneider, Angew. Chem. 2000, 112, 22922310; Angew. Chem. Int. Ed. 2000, 39, 22062224.
  • 6
    J. O. Metzger, Eur. J. Lipid Sci. Technol. 2009, 111, 865876.
  • 7
    M. A. R. Meier, J. O. Metzger, U. S. Schubert, Chem. Soc. Rev. 2007, 36, 17881802.
  • 8
    F. C. Naughton, J. Am. Oil Chem. Soc. 1974, 51, 6571.
  • 9
    V. V. Korshak, S. V. Vinogradova, Polyesters, Pergamon Press, Oxford, 1965.
  • 10
    L. Mandelkern, R. G. Alamo in Physical Properties of Polymers Handbook (Ed.: J. E. Mark), Springer, New York, 2007, pp. 165186.
  • 11
    D. Quinzler, S. Mecking, Chem. Commun. 2009, 54005402.
  • 12
    This is underlined by the resulting necessity of incorporation of fossil-feedstock based aromatic diacid comonomers: M. Yamamoto, U. Witt, G. Skupin, D. Beimborn, R.-J. Müller in Biopolymers, Vol. 4 (Eds. A. Steinbüchel, Y. Doi), Wiley-VCH, Weinheim, 2002, pp. 299311.
  • 13
    For enzymatic ω-oxidation of (saturated) fatty acids cf.;
  • 13a
    S. Zibek, W. Wagner, T. Hirth, S. Rupp, S. Huf, Chem. Ing. Tech. 2009, 81, 17971808;
  • 13b
    U. Schoerken, P. Kempers, Eur. J. Lipid Sci. Technol. 2009, 111, 627645.
  • 14
    W. Clegg, G. R. Eastham, M. R. J. Elsegood, R. P. Tooze, X. L. Wang, K. Whiston, Chem. Commun. 1999, 18771878.
  • 15
    A. H. Tullo, Chem. Eng. News 2009, 87, 2223.
  • 16
    R. I. Pugh, E. Drent, P. G. Pringle, Chem. Commun. 2001, 14761477.
  • 17
    C. Jiménez-Rodriguez, G. R. Eastham, D. J. Cole-Hamilton, Inorg. Chem. Commun. 2005, 8, 878881.
  • 18
    C. Jiménez-Rodriguez, Ph.D. thesis, University of St. Andrews, 2004.
  • 19
    Remarkably, the multiple unsaturated linoleate and linolenate are also converted into the saturated, linear α,ω-diester, which is advantageous for the utilization of technical-grade fatty acid esters.[17]
  • 20
    See also: Y. Zhu, J. Patel, S. Mujcinovic, W. R. Jackson, A. J. Robinson, Green Chem. 2006, 8, 746749.
  • 21
    W. H. Carothers, Trans. Faraday Soc. 1936, 32, 3952.
  • 22
    H. Köpnick, M. Schmidt, W. Brügging, J. Rüter, W. Kaminsky in Ullmann’s Encyclopedia of Industrial Chemistry, Vol. 28, 6th ed., Wiley-VCH, Weinheim, 2003, pp. 75102.
  • 23
    From ΔHm (determined by DSC) and χ (determined by WAXS), an enthalpy of fusion ΔHu of the crystalline portion of about 200 J g−1 (1) and 240 J g−1 (2) is estimated by comparison to ΔHu=293 J g−1 for linear polyethylene. Poly(decamethylene sebacate) as an example of a long-chain linear aliphatic polyester from currently accessible monomers melts with ΔHu 148 J g−1 (Tm=80 °C).[10]
  • 24
    In this work, reduction of diacid esters to diols was performed with inorganic hydrides, as this is convenient on a laboratory scale. Industrially, catalytic reduction of esters to alcohols with hydrogen as a reagent is an established reaction.