29Si DFT/NMR Observation of Spin–Orbit Effect in Metallasilatrane Sheds Some Light on the Strength of the Metal→Silicon Interaction

Authors

  • Dr. Lionel A. Truflandier,

    1. Department of Chemistry, 312 Natural Sciences Complex, State University of New York at Buffalo, Buffalo, NY 14260-3000 (USA), Fax: (+1) 716-645-6963
    Search for more papers by this author
  • Dr. Erica Brendler,

    1. Institut für Analytische Chemie, Technische Universität Bergakademie Freiberg, 09596 Freiberg (Germany)
    Search for more papers by this author
  • Dr. Jörg Wagler,

    Corresponding author
    1. Institut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, 09596 Freiberg (Germany)
    • Institut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, 09596 Freiberg (Germany)
    Search for more papers by this author
  • Prof. Dr. Jochen Autschbach

    Corresponding author
    1. Department of Chemistry, 312 Natural Sciences Complex, State University of New York at Buffalo, Buffalo, NY 14260-3000 (USA), Fax: (+1) 716-645-6963
    • Department of Chemistry, 312 Natural Sciences Complex, State University of New York at Buffalo, Buffalo, NY 14260-3000 (USA), Fax: (+1) 716-645-6963
    Search for more papers by this author

  • This work has been supported by the National Science Foundation (CHE 0447321 and 092253).

Abstract

original image

SO what? Spectral features caused by relativistic effects on chemical shift tensors are not always looked for in solid-state NMR spectroscopy. Slow-rotation 29Si magic-angle spinning (MAS) NMR measurements on the triad [ClTM(μ-mt)4SiCl] (TM=Pt, Pd, Ni; mt=2-mercapto-1-methylimidazolide) reveal that heavy-atom spin–orbit (SO) coupling has a dramatic impact on the 29Si NMR spectral peak shape.

Ancillary