SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Jiayin Hu, Jun Ma, Zhaofu Zhang, Qinggong Zhu, Huacong Zhou, Wenjing Lu, Buxing Han, A route to convert CO2: synthesis of 3,4,5-trisubstituted oxazolones, Green Chem., 2015, 17, 2, 1219

    CrossRef

  2. 2
    Georgy A. Filonenko, Daniel Smykowski, Bartłomiej M. Szyja, Guanna Li, Jerzy Szczygieł, Emiel J. M. Hensen, Evgeny A. Pidko, Catalytic Hydrogenation of CO2to Formates by a Lutidine-Derived Ru–CNC Pincer Complex: Theoretical Insight into the Unrealized Potential, ACS Catalysis, 2015, 5, 2, 1145

    CrossRef

  3. 3
    Bao-Hua Xu, Jin-Quan Wang, Jian Sun, Ying Huang, Jun-Ping Zhang, Xiang-Ping Zhang, Suo-Jiang Zhang, Fixation of CO2into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach, Green Chem., 2015, 17, 1, 108

    CrossRef

  4. 4
    Lei Tao, Qi Zhang, Shu-Shuang Li, Xiang Liu, Yong-Mei Liu, Yong Cao, Heterogeneous Gold-Catalyzed Selective Reductive Transformation of Quinolines with Formic Acid, Advanced Synthesis & Catalysis, 2015, 357, 2-3
  5. 5
    Qi-Long Zhu, Qiang Xu, Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage, Energy Environ. Sci., 2015, 8, 2, 478

    CrossRef

  6. 6
    Haijun Guo, Shanggui Li, Fen Peng, Hairong Zhang, Lian Xiong, Chao Huang, Can Wang, Xinde Chen, Roles Investigation of Promoters in K/Cu–Zn Catalyst and Higher Alcohols Synthesis from CO2 Hydrogenation over a Novel Two-Stage Bed Catalyst Combination System, Catalysis Letters, 2015, 145, 2, 620

    CrossRef

  7. 7
    Roman Dobrovetsky, Douglas W. Stephan, tBu3P/ZnR2 (R=Et, I) Frustrated Lewis Pair Catalysts for Functionalization and Reduction of CO2, Israel Journal of Chemistry, 2015, 55, 2
  8. 8
    Jiayin Hu, Jun Ma, Qinggong Zhu, Zhaofu Zhang, Congyi Wu, Buxing Han, Transformation of Atmospheric CO2 Catalyzed by Protic Ionic Liquids: Efficient Synthesis of 2-Oxazolidinones, Angewandte Chemie International Edition, 2015, 54, 11
  9. 9
    Jiayin Hu, Jun Ma, Qinggong Zhu, Zhaofu Zhang, Congyi Wu, Buxing Han, Transformation of Atmospheric CO2 Catalyzed by Protic Ionic Liquids: Efficient Synthesis of 2-Oxazolidinones, Angewandte Chemie, 2015, 127, 11
  10. 10
    Yu-Nong Li, Liang-Nian He, Xian-Dong Lang, Xiao-Fang Liu, Shuai Zhang, An integrated process of CO2capture and in situ hydrogenation to formate using a tunable ethoxyl-functionalized amidine and Rh/bisphosphine system, RSC Adv., 2014, 4, 91, 49995

    CrossRef

  11. 11
    Dörthe Mellmann, Enrico Barsch, Matthias Bauer, Kathleen Grabow, Albert Boddien, Anja Kammer, Peter Sponholz, Ursula Bentrup, Ralf Jackstell, Henrik Junge, Gábor Laurenczy, Ralf Ludwig, Matthias Beller, Base-Free Non-Noble-Metal-Catalyzed Hydrogen Generation from Formic Acid: Scope and Mechanistic Insights, Chemistry - A European Journal, 2014, 20, 42
  12. 12
    Miquel Torrent-Sucarrat, António J. C. Varandas, Carbon Dioxide Capture with the Ozone-like Polynitrogen Molecule Li3N3, The Journal of Physical Chemistry A, 2014, 118, 51, 12256

    CrossRef

  13. 13
    Jin Hee Lee, Jaeyune Ryu, Jin Young Kim, Suk-Woo Nam, Jong Hee Han, Tae-Hoon Lim, Sanjeev Gautam, Keun Hwa Chae, Chang Won Yoon, Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride, Journal of Materials Chemistry A, 2014, 2, 25, 9490

    CrossRef

  14. 14
    Mehmet Yurderi, Ahmet Bulut, Mehmet Zahmakiran, Murat Kaya, Carbon supported trimetallic PdNiAg nanoparticles as highly active, selective and reusable catalyst in the formic acid decomposition, Applied Catalysis B: Environmental, 2014, 160-161, 514

    CrossRef

  15. 15
    Sungrye Kim, Min Koo Kim, Sang Hyun Lee, Sungho Yoon, Kwang-Deog Jung, Conversion of CO2 to formate in an electroenzymatic cell using Candida boidinii formate dehydrogenase, Journal of Molecular Catalysis B: Enzymatic, 2014, 102, 9

    CrossRef

  16. 16
    Séverine Moret, Paul J. Dyson, Gábor Laurenczy, Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media, Nature Communications, 2014, 5,

    CrossRef

  17. 17
    Xu Lu, Dennis Y. C. Leung, Huizhi Wang, Michael K. H. Leung, Jin Xuan, Electrochemical Reduction of Carbon Dioxide to Formic Acid, ChemElectroChem, 2014, 1, 5
  18. 18
    Miklos Czaun, Alain Goeppert, Jotheeswari Kothandaraman, Robert B. May, Ralf Haiges, G. K. Surya Prakash, George A. Olah, Formic Acid As a Hydrogen Storage Medium: Ruthenium-Catalyzed Generation of Hydrogen from Formic Acid in Emulsions, ACS Catalysis, 2014, 4, 1, 311

    CrossRef

  19. 19
    Henry Fong, Jonas C. Peters, Hydricity of an Fe–H Species and Catalytic CO2Hydrogenation, Inorganic Chemistry, 2014, 150128084746000

    CrossRef

  20. 20
    Thomas Schaub, Stefan Rüdenauer, Martine Weis, Intramolecular Hydrogen Transfer Reaction: Menthon from Isopulegol, Organic Letters, 2014, 16, 10, 2575

    CrossRef

  21. 21
    Georgy A. Filonenko, Emiel J. M. Hensen, Evgeny A. Pidko, Mechanism of CO2hydrogenation to formates by homogeneous Ru-PNP pincer catalyst: from a theoretical description to performance optimization, Catal. Sci. Technol., 2014, 4, 10, 3474

    CrossRef

  22. 22
    Christian Reller, Matthias Pöge, Andreas Lißner, Florian O. R. L Mertens, Methanol from CO2by Organo-Cocatalysis: CO2Capture and Hydrogenation in One Process Step, Environmental Science & Technology, 2014, 48, 24, 14799

    CrossRef

  23. 23
    Xinjiang Cui, Xingchao Dai, Yan Zhang, Youquan Deng, Feng Shi, Methylation of amines, nitrobenzenes and aromatic nitriles with carbon dioxide and molecular hydrogen, Chem. Sci., 2014, 5, 2, 649

    CrossRef

  24. 24
    Núria Huguet, Ivana Jevtovikj, Alvaro Gordillo, Michael L. Lejkowski, Ronald Lindner, Miriam Bru, Andrey Y. Khalimon, Frank Rominger, Stephan A. Schunk, Peter Hofmann, Michael Limbach, Nickel-Catalyzed Direct Carboxylation of Olefins with CO2: One-Pot Synthesis of α,β-Unsaturated Carboxylic Acid Salts, Chemistry - A European Journal, 2014, 20, 51
  25. 25
    Marc-André Courtemanche, Marc-André Légaré, Laurent Maron, Frédéric-Georges Fontaine, Reducing CO2to Methanol Using Frustrated Lewis Pairs: On the Mechanism of Phosphine–Borane-Mediated Hydroboration of CO2, Journal of the American Chemical Society, 2014, 136, 30, 10708

    CrossRef

  26. 26
    Wesley Sattler, Gerard Parkin, Reduction of bicarbonate and carbonate to formate in molecular zinc complexes, Catalysis Science & Technology, 2014, 4, 6, 1578

    CrossRef

  27. 27
    Matthias Vogt, Alexander Nerush, Yael Diskin-Posner, Yehoshoa Ben-David, David Milstein, Reversible CO2 binding triggered by metal–ligand cooperation in a rhenium(i) PNP pincer-type complex and the reaction with dihydrogen, Chemical Science, 2014, 5, 5, 2043

    CrossRef

  28. 28
    Mathew D. Anker, Merle Arrowsmith, Peter Bellham, Michael S. Hill, Gabriele Kociok-Köhn, David J. Liptrot, Mary F. Mahon, Catherine Weetman, Selective reduction of CO2 to a methanol equivalent by B(C6F5)3-activated alkaline earth catalysis, Chemical Science, 2014, 5, 7, 2826

    CrossRef

  29. 29
    Vijay P. Taori, Rajendar Bandari, Michael R. Buchmeiser, Selective Reduction of CO2 with Silanes over Platinum Nanoparticles Immobilised on a Polymeric Monolithic Support under Ambient Conditions, Chemistry - A European Journal, 2014, 20, 12
  30. 30
    Gabriele Centi, Elsje Alessandra Quadrelli, Siglinda Perathoner, Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries, Energy & Environmental Science, 2013, 6, 6, 1711

    CrossRef

  31. 31
    Chelsea A. Huff, Melanie S. Sanford, Catalytic CO2Hydrogenation to Formate by a Ruthenium Pincer Complex, ACS Catalysis, 2013, 3, 10, 2412

    CrossRef

  32. 32
    Rudolf J. Wehmschulte, Mahmoud Saleh, Douglas R. Powell, CO2Activation with Bulky Neutral and Cationic Phenoxyalanes, Organometallics, 2013, 32, 22, 6812

    CrossRef

  33. 33
    Ryo Shintani, Kyoko Nozaki, Copper-Catalyzed Hydroboration of Carbon Dioxide, Organometallics, 2013, 32, 8, 2459

    CrossRef

  34. 34
    Andreas Berkefeld, Warren E. Piers, Masood Parvez, Ludovic Castro, Laurent Maron, Odile Eisenstein, Decamethylscandocinium-hydrido-(perfluorophenyl)borate: fixation and tandem tris(perfluorophenyl)borane catalysed deoxygenative hydrosilation of carbon dioxide, Chemical Science, 2013, 4, 5, 2152

    CrossRef

  35. 35
    Aaron M. Appel, John E. Bercaw, Andrew B. Bocarsly, Holger Dobbek, Daniel L. DuBois, Michel Dupuis, James G. Ferry, Etsuko Fujita, Russ Hille, Paul J. A. Kenis, Cheryl A. Kerfeld, Robert H. Morris, Charles H. F. Peden, Archie R. Portis, Stephen W. Ragsdale, Thomas B. Rauchfuss, Joost N. H. Reek, Lance C. Seefeldt, Rudolf K. Thauer, Grover L. Waldrop, Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2Fixation, Chemical Reviews, 2013, 113, 8, 6621

    CrossRef

  36. 36
    Mingyuan He, Yuhan Sun, Buxing Han, Green Carbon Science: Scientific Basis for Integrating Carbon Resource Processing, Utilization, and Recycling, Angewandte Chemie International Edition, 2013, 52, 37
  37. 37
    Mingyuan He, Yuhan Sun, Buxing Han, Grüne Kohlenstoffwissenschaft: eine wissenschaftliche Grundlage für das Verknüpfen von Verarbeitung, Nutzung und Recycling der Kohlenstoffressourcen, Angewandte Chemie, 2013, 125, 37
  38. 38
    Ken Motokura, Daiki Kashiwame, Naoki Takahashi, Akimitsu Miyaji, Toshihide Baba, Highly Active and Selective Catalysis of Copper Diphosphine Complexes for the Transformation of Carbon Dioxide into Silyl Formate, Chemistry - A European Journal, 2013, 19, 30
  39. 39
    Yi-Yu Cai, Xin-Hao Li, Ya-Nan Zhang, Xiao Wei, Kai-Xue Wang, Jie-Sheng Chen, Highly Efficient Dehydrogenation of Formic Acid over a Palladium-Nanoparticle-Based Mott–Schottky Photocatalyst, Angewandte Chemie, 2013, 125, 45
  40. 40
    Yi-Yu Cai, Xin-Hao Li, Ya-Nan Zhang, Xiao Wei, Kai-Xue Wang, Jie-Sheng Chen, Highly Efficient Dehydrogenation of Formic Acid over a Palladium-Nanoparticle-Based Mott–Schottky Photocatalyst, Angewandte Chemie International Edition, 2013, 52, 45
  41. 41
    Yu-Nong Li, Liang-Nian He, An-Hua Liu, Xian-Dong Lang, Zhen-Zhen Yang, Bing Yu, Chao-Ran Luan, In situ hydrogenation of captured CO2 to formate with polyethyleneimine and Rh/monophosphine system, Green Chemistry, 2013, 15, 10, 2825

    CrossRef

  42. 42
    Philipp N. Plessow, Laura Weigel, Ronald Lindner, Ansgar Schäfer, Frank Rominger, Michael Limbach, Peter Hofmann, Mechanistic Details of the Nickel-Mediated Formation of Acrylates from CO2, Ethylene and Methyl Iodide, Organometallics, 2013, 32, 11, 3327

    CrossRef

  43. 43
    Andreas Kreimeyer, Neue Wege in der industriellen Chemieforschung im Spiegel der Angewandten Chemie, Angewandte Chemie, 2013, 125, 1
  44. 44
    Andreas Kreimeyer, New Directions in Industrial Chemical Research as Reflected in Angewandte Chemie, Angewandte Chemie International Edition, 2013, 52, 1
  45. 45
    Amy M. Bartrom, Jennine Ta, Tien Q. Nguyen, John Her, Alexandra Donovan, John L. Haan, Optimization of an anode fabrication method for the alkaline Direct Formate Fuel Cell, Journal of Power Sources, 2013, 229, 234

    CrossRef

  46. 46
    Xiaofeng Huang, Tongcheng Cao, Meichuan Liu, Guohua Zhao, Synergistic Photoelectrochemical Synthesis of Formate from CO2on {121̅} Hierarchical Co3O4, The Journal of Physical Chemistry C, 2013, 117, 50, 26432

    CrossRef

  47. 47
    Changho Yoo, Jin Kim, Yunho Lee, Synthesis and Reactivity of Nickel(II) Hydroxycarbonyl Species, NiCOOH-κC, Organometallics, 2013, 32, 23, 7195

    CrossRef

  48. 48
    Georgy A. Filonenko, Matthew P. Conley, Christophe Copéret, Martin Lutz, Emiel J. M. Hensen, Evgeny A. Pidko, The impact of Metal–Ligand Cooperation in Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium PNP Pincer, ACS Catalysis, 2013, 3, 11, 2522

    CrossRef

  49. 49
    Boxun Hu, Curtis Guild, Steven L. Suib, Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products, Journal of CO2 Utilization, 2013, 1, 18

    CrossRef

  50. 50
    Vasile I. Parvulescu, Pascal Granger, New and Future Developments in Catalysis, 2013,

    CrossRef

  51. 51
    Narcís Homs, Jamil Toyir, Pilar Ramírez de la Piscina, New and Future Developments in Catalysis, 2013,

    CrossRef

  52. 52
    Z.-Y. Yang, V. R. Moure, D. R. Dean, L. C. Seefeldt, Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase, Proceedings of the National Academy of Sciences, 2012, 109, 48, 19644

    CrossRef

  53. 53
    Jonathan Parr, Carbon, silicon, germanium, tin and lead, Annual Reports Section "A" (Inorganic Chemistry), 2012, 108, 85

    CrossRef

  54. 54
    Sebastian Wesselbaum, Ulrich Hintermair, Walter Leitner, Continuous-Flow Hydrogenation of Carbon Dioxide to Pure Formic Acid using an Integrated scCO2 Process with Immobilized Catalyst and Base, Angewandte Chemie, 2012, 124, 34
  55. 55
    Sebastian Wesselbaum, Ulrich Hintermair, Walter Leitner, Continuous-Flow Hydrogenation of Carbon Dioxide to Pure Formic Acid using an Integrated scCO2 Process with Immobilized Catalyst and Base, Angewandte Chemie International Edition, 2012, 51, 34
  56. 56
    Debora Preti, Sergio Squarcialupi, Giuseppe Fachinetti, Conversion of Syngas into Formic Acid, ChemCatChem, 2012, 4, 4
  57. 57
    Ken Motokura, Daiki Kashiwame, Akimitsu Miyaji, Toshihide Baba, Copper-Catalyzed Formic Acid Synthesis from CO2with Hydrosilanes and H2O, Organic Letters, 2012, 14, 10, 2642

    CrossRef

  58. 58
    Manish Khandelwal, Rudolf J. Wehmschulte, Deoxygenative Reduction of Carbon Dioxide to Methane, Toluene, and Diphenylmethane with [Et2Al]+ as Catalyst, Angewandte Chemie International Edition, 2012, 51, 29
  59. 59
    Manish Khandelwal, Rudolf J. Wehmschulte, Deoxygenierende Reduktion von Kohlendioxid zu Methan, Toluol und Diphenylmethan mit [Et2Al]+ als Katalysator, Angewandte Chemie, 2012, 124, 29
  60. 60
    Qing-Yuan Bi, Xian-Long Du, Yong-Mei Liu, Yong Cao, He-Yong He, Kang-Nian Fan, Efficient Subnanometric Gold-Catalyzed Hydrogen Generation via Formic Acid Decomposition under Ambient Conditions, Journal of the American Chemical Society, 2012, 134, 21, 8926

    CrossRef

  61. 61
    Qiquan Luo, Gang Feng, Matthias Beller, Haijun Jiao, Formic Acid Dehydrogenation on Ni(111) and Comparison with Pd(111) and Pt(111), The Journal of Physical Chemistry C, 2012, 116, 6, 4149

    CrossRef

  62. 62
    Manuel G. Mura, Lidia De Luca, Giampaolo Giacomelli, Andrea Porcheddu, Formic Acid: A Promising Bio-Renewable Feedstock for Fine Chemicals, Advanced Synthesis & Catalysis, 2012, 354, 17
  63. 63
    Gregor Meier, Thomas Braun, Hydrogenation of a Rhodium Peroxido Complex by Formate Derivatives: Mechanistic Studies and the Catalytic Formation of H2O2 from O2, Angewandte Chemie, 2012, 124, 50
  64. 64
    Gregor Meier, Thomas Braun, Hydrogenation of a Rhodium Peroxido Complex by Formate Derivatives: Mechanistic Studies and the Catalytic Formation of H2O2 from O2, Angewandte Chemie International Edition, 2012, 51, 50
  65. 65
    Samuel J. Mitton, Laura Turculet, Mild Reduction of Carbon Dioxide to Methane with Tertiary Silanes Catalyzed by Platinum and Palladium Silyl Pincer Complexes, Chemistry - A European Journal, 2012, 18, 48
  66. 66
    Fenglou Zou, Jacqueline M. Cole, Timothy G. J. Jones, Li Jiang, Rhodium nitrosyl catalysts for CO2 hydrogenation to formic acid under mild conditions, Applied Organometallic Chemistry, 2012, 26, 10
  67. 67
    Amy M. Bartrom, John L. Haan, The direct formate fuel cell with an alkaline anion exchange membrane, Journal of Power Sources, 2012, 214, 68

    CrossRef

  68. 68
    Albert Boddien, Christopher Federsel, Peter Sponholz, Dörthe Mellmann, Ralf Jackstell, Henrik Junge, Gabor Laurenczy, Matthias Beller, Towards the development of a hydrogen battery, Energy & Environmental Science, 2012, 5, 10, 8907

    CrossRef

  69. 69
    Carolin Ziebart, Christopher Federsel, Pazhamalai Anbarasan, Ralf Jackstell, Wolfgang Baumann, Anke Spannenberg, Matthias Beller, Well-Defined Iron Catalyst for Improved Hydrogenation of Carbon Dioxide and Bicarbonate, Journal of the American Chemical Society, 2012, 134, 51, 20701

    CrossRef

  70. 70
    Wesley Sattler, Gerard Parkin, Zinc Catalysts for On-Demand Hydrogen Generation and Carbon Dioxide Functionalization, Journal of the American Chemical Society, 2012, 134, 42, 17462

    CrossRef

  71. 71
    Debora Preti, Claudio Resta, Sergio Squarcialupi, Giuseppe Fachinetti, Carbon Dioxide Hydrogenation to Formic Acid by Using a Heterogeneous Gold Catalyst, Angewandte Chemie International Edition, 2011, 50, 52
  72. 72
    Debora Preti, Claudio Resta, Sergio Squarcialupi, Giuseppe Fachinetti, Carbon Dioxide Hydrogenation to Formic Acid by Using a Heterogeneous Gold Catalyst, Angewandte Chemie, 2011, 123, 52
  73. 73
    Martina Peters, Burkhard Köhler, Wilhelm Kuckshinrichs, Walter Leitner, Peter Markewitz, Thomas E. Müller, Chemical Technologies for Exploiting and Recycling Carbon Dioxide into the Value Chain, ChemSusChem, 2011, 4, 9
  74. 74
    Ryo Tanaka, Makoto Yamashita, Lung Wa Chung, Keiji Morokuma, Kyoko Nozaki, Mechanistic Studies on the Reversible Hydrogenation of Carbon Dioxide Catalyzed by an Ir-PNP Complex, Organometallics, 2011, 30, 24, 6742

    CrossRef

  75. 75
    Zhaofu Zhang, Jun Ma, Buxing Han, Catalysis in Supercritical Fluids,