SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Gaoyan Wang, Guoping Feng, Abigail B. Snyder, David C. Manns, John. J. Churey, Randy W. Worobo, Bactericidal thurincin H causes unique morphological changes in Bacillus cereus F4552 without affecting membrane permeability, FEMS Microbiology Letters, 2014, 357, 1
  2. 2
    Gaoyan Wang, David C. Manns, Giselle K. Guron, John. J. Churey, Randy W. Worobo, Large-Scale Purification, Characterization, and Spore Outgrowth Inhibitory Effect of Thurincin H, a Bacteriocin Produced by Bacillus thuringiensis SF361, Probiotics and Antimicrobial Proteins, 2014, 6, 2, 105

    CrossRef

  3. 3
    Joan B. Broderick, Benjamin R. Duffus, Kaitlin S. Duschene, Eric M. Shepard, RadicalS-Adenosylmethionine Enzymes, Chemical Reviews, 2014, 114, 8, 4229

    CrossRef

  4. 4
    Adam K. Sieradzan, Andrei Niadzvedtski, Harold A. Scheraga, Adam Liwo, Revised Backbone-Virtual-Bond-Angle Potentials to Treat thel- andd-Amino Acid Residues in the Coarse-Grained United Residue (UNRES) Force Field, Journal of Chemical Theory and Computation, 2014, 10, 5, 2194

    CrossRef

  5. 5
    G. Wang, D.C. Manns, G.K.P. Guron, J.J. Churey, R.W. Worobo, Short communication: Homologous expression of recombinant and native thurincin H in an engineered natural producer, Journal of Dairy Science, 2014, 97, 7, 4120

    CrossRef

  6. 6
    G. Wang, D.C. Manns, J.J. Churey, R.W. Worobo, Short communication: Naturally sensitive Bacillus thuringiensis EG10368 produces thurincin H and acquires immunity after heterologous expression of the one-step-amplified thurincin H gene cluster, Journal of Dairy Science, 2014, 97, 7, 4115

    CrossRef

  7. 7
    Christopher T Lohans, John C Vederas, Structural characterization of thioether-bridged bacteriocins, The Journal of Antibiotics, 2014, 67, 1, 23

    CrossRef

  8. 8
    Leif Flühe, Mohamed A Marahiel, Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis, Current Opinion in Chemical Biology, 2013, 17, 4, 605

    CrossRef

  9. 9
    Kyle L. Dunbar, Douglas A. Mitchell, Revealing Nature’s Synthetic Potential Through the Study of Ribosomal Natural Product Biosynthesis, ACS Chemical Biology, 2013, 8, 3, 473

    CrossRef

  10. 10
    Paul G. Arnison, Mervyn J. Bibb, Gabriele Bierbaum, Albert A. Bowers, Tim S. Bugni, Grzegorz Bulaj, Julio A. Camarero, Dominic J. Campopiano, Gregory L. Challis, Jon Clardy, Paul D. Cotter, David J. Craik, Michael Dawson, Elke Dittmann, Stefano Donadio, Pieter C. Dorrestein, Karl-Dieter Entian, Michael A. Fischbach, John S. Garavelli, Ulf Göransson, Christian W. Gruber, Daniel H. Haft, Thomas K. Hemscheidt, Christian Hertweck, Colin Hill, Alexander R. Horswill, Marcel Jaspars, Wendy L. Kelly, Judith P. Klinman, Oscar P. Kuipers, A. James Link, Wen Liu, Mohamed A. Marahiel, Douglas A. Mitchell, Gert N. Moll, Bradley S. Moore, Rolf Müller, Satish K. Nair, Ingolf F. Nes, Gillian E. Norris, Baldomero M. Olivera, Hiroyasu Onaka, Mark L. Patchett, Joern Piel, Martin J. T. Reaney, Sylvie Rebuffat, R. Paul Ross, Hans-Georg Sahl, Eric W. Schmidt, Michael E. Selsted, Konstantin Severinov, Ben Shen, Kaarina Sivonen, Leif Smith, Torsten Stein, Roderich D. Süssmuth, John R. Tagg, Gong-Li Tang, Andrew W. Truman, John C. Vederas, Christopher T. Walsh, Jonathan D. Walton, Silke C. Wenzel, Joanne M. Willey, Wilfred A. van der Donk, Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature, Natural Product Reports, 2013, 30, 1, 108

    CrossRef

  11. 11
    Xiao Yang, Wilfred A. van der Donk, Ribosomally Synthesized and Post-Translationally Modified Peptide Natural Products: New Insights into the Role of Leader and Core Peptides during Biosynthesis, Chemistry - A European Journal, 2013, 19, 24
  12. 12
    Christopher T. Lohans, Kaitlyn M. Towle, Mark Miskolzie, Ryan T. McKay, Marco J. van Belkum, Lynn M. McMullen, John C. Vederas, Solution Structures of the Linear Leaderless Bacteriocins Enterocin 7A and 7B Resemble Carnocyclin A, a Circular Antimicrobial Peptide, Biochemistry, 2013, 52, 23, 3987

    CrossRef

  13. 13
    Leif Flühe, Olaf Burghaus, Beata M. Wieckowski, Tobias W. Giessen, Uwe Linne, Mohamed A. Marahiel, Two [4Fe-4S] Clusters Containing Radical SAM Enzyme SkfB Catalyze Thioether Bond Formation during the Maturation of the Sporulation Killing Factor, Journal of the American Chemical Society, 2013, 135, 3, 959

    CrossRef

  14. 14
    Nicholas D. Lanz, Squire J. Booker, Identification and function of auxiliary iron–sulfur clusters in radical SAM enzymes, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2012, 1824, 11, 1196

    CrossRef

  15. 15
    Christopher T. Lohans, Zedu Huang, Marco J. van Belkum, Maude Giroud, Clarissa S. Sit, Erika M. Steels, Jing Zheng, Randy M. Whittal, Lynn M. McMullen, John C. Vederas, Structural Characterization of the Highly Cyclized Lantibiotic Paenicidin A via a Partial Desulfurization/Reduction Strategy, Journal of the American Chemical Society, 2012, 134, 48, 19540

    CrossRef

  16. 16
    Leif Flühe, Thomas A Knappe, Michael J Gattner, Antje Schäfer, Olaf Burghaus, Uwe Linne, Mohamed A Marahiel, The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A, Nature Chemical Biology, 2012, 8, 4, 350

    CrossRef

  17. 17
    Qi Zhang, Yi Yu, Thioether Crosslinkages Created by a Radical SAM Enzyme, ChemBioChem, 2012, 13, 8
  18. 18
    Noah A. Bindman, Wilfred A. Van Der Donk, RiPPs: Ribosomally Synthesized and Posttranslationally Modified Peptides,