SEARCH

SEARCH BY CITATION

Keywords:

  • C[BOND]H activation;
  • density functional calculations;
  • gas-phase reactions;
  • hydrogen-atom transfer;
  • reaction mechanisms

Abstract

Hydrogen-atom transfer (HAT), as one of the fundamental reactions in chemistry, is investigated with state-of-the-art gas-phase experiments in conjunction with computational studies. The focus of this Minireview concerns the role that the intrinsic properties of gaseous oxo-clusters play to permit HAT reactivity from saturated hydrocarbons at ambient conditions. In addition, mechanistic implications are discussed which pertain to heterogeneous catalysis. From these combined experimental/computational studies, the crucial role of unpaired spin density at the abstracting atom becomes clear, in distinct contrast to recent conclusions derived from solution-phase experiments.