SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Jing Yi, Jeffrey T. Miller, Dmitry Y. Zemlyanov, Ruihong Zhang, Paul J. Dietrich, Fabio H. Ribeiro, Sergey Suslov, Mahdi M. Abu-Omar, A Reusable Unsupported Rhenium Nanocrystalline Catalyst for Acceptorless Dehydrogenation of Alcohols through γ-C–H Activation, Angewandte Chemie International Edition, 2014, 53, 3
  2. 2
    Jing Yi, Jeffrey T. Miller, Dmitry Y. Zemlyanov, Ruihong Zhang, Paul J. Dietrich, Fabio H. Ribeiro, Sergey Suslov, Mahdi M. Abu-Omar, A Reusable Unsupported Rhenium Nanocrystalline Catalyst for Acceptorless Dehydrogenation of Alcohols through γ-C–H Activation, Angewandte Chemie, 2014, 126, 3
  3. 3
    Aimaro Sanna, Advanced Biofuels from Thermochemical Processing of Sustainable Biomass in Europe, BioEnergy Research, 2014, 7, 1, 36

    CrossRef

  4. 4
    Reentje G. Harms, Iulius I. E. Markovits, Markus Drees, h.c. mult. Wolfgang A. Herrmann, Mirza Cokoja, Fritz E. Kühn, Cleavage of C[BOND]O Bonds in Lignin Model Compounds Catalyzed by Methyldioxorhenium in Homogeneous Phase, ChemSusChem, 2014, 7, 2
  5. 5
    Aya Konaka, Teruoki Tago, Takuya Yoshikawa, Ayaka Nakamura, Takao Masuda, Conversion of glycerol into allyl alcohol over potassium-supported zirconia–iron oxide catalyst, Applied Catalysis B: Environmental, 2014, 146, 267

    CrossRef

  6. 6
    J. Michael McClain, Kenneth M. Nicholas, Elemental Reductants for the Deoxydehydration of Glycols, ACS Catalysis, 2014, 4, 7, 2109

    CrossRef

  7. 7
    Jiayu Xin, Suojiang Zhang, Dongxia Yan, Olubunmi Ayodele, Xingmei Lu, Jianji Wang, Formation of C–C bonds for the production of bio-alkanes under mild conditions, Green Chemistry, 2014, 16, 7, 3589

    CrossRef

  8. 8
    Xiukai Li, Di Wu, Ting Lu, Guangshun Yi, Haibin Su, Yugen Zhang, Highly Efficient Chemical Process To Convert Mucic Acid into Adipic Acid and DFT Studies of the Mechanism of the Rhenium-Catalyzed Deoxydehydration, Angewandte Chemie International Edition, 2014, 53, 16
  9. 9
    Xiukai Li, Di Wu, Ting Lu, Guangshun Yi, Haibin Su, Yugen Zhang, Highly Efficient Chemical Process To Convert Mucic Acid into Adipic Acid and DFT Studies of the Mechanism of the Rhenium-Catalyzed Deoxydehydration, Angewandte Chemie, 2014, 126, 16
  10. 10
    Marimuthu Selvaraj, Kannan Shanthi, Rajamanickam Maheswari, Anand Ramanathan, Hydrodeoxygenation of Guaiacol over MoO3-NiO/Mesoporous Silicates: Effect of Incorporated Heteroatom, Energy & Fuels, 2014, 28, 4, 2598

    CrossRef

  11. 11
    Johannes R. Dethlefsen, Daniel Lupp, Byung-Chang Oh, Peter Fristrup, Molybdenum-Catalyzed Deoxydehydration of Vicinal Diols, ChemSusChem, 2014, 7, 2
  12. 12
    Jacqkis Davis, Radhey S. Srivastava, Oxorhenium-catalyzed deoxydehydration of glycols and epoxides, Tetrahedron Letters, 2014, 55, 30, 4178

    CrossRef

  13. 13
    I-Hon Chen, Kevin G. M. Kou, Diane N. Le, Colin M. Rathbun, Vy M. Dong , Recognition and Site-Selective Transformation of Monosaccharides by Using Copper(II) Catalysis, Chemistry - A European Journal, 2014, 20, 17
  14. 14
    Yasushi Amada, Nobuhiko Ota, Masazumi Tamura, Yoshinao Nakagawa, Keiichi Tomishige, Selective Hydrodeoxygenation of Cyclic Vicinal Diols to Cyclic Alcohols over Tungsten Oxide–Palladium Catalysts, ChemSusChem, 2014, 7, 6
  15. 15
    Shuhui Yow, Adi E. Nako, Léonard Neveu, Andrew J. P. White, Mark R. Crimmin, A Highly Chemoselective, Zr-Catalyzed C–O Bond Functionalization of Benzofuran, Organometallics, 2013, 32, 19, 5260

    CrossRef

  16. 16
    Suresh Raju, Johann T. B. H. Jastrzebski, Martin Lutz, Robertus J. M. Klein Gebbink, Catalytic Deoxydehydration of Diols to Olefins by using a Bulky Cyclopentadiene-based Trioxorhenium Catalyst, ChemSusChem, 2013, 6, 9
  17. 17
    Camille Boucher-Jacobs, Kenneth M. Nicholas, Catalytic Deoxydehydration of Glycols with Alcohol Reductants, ChemSusChem, 2013, 6, 4
  18. 18
    Jürgen O. Metzger, Catalytic Deoxygenation of Carbohydrate Renewable Resources, ChemCatChem, 2013, 5, 3
  19. 19
    Mika Shiramizu, F. Dean Toste, ChemInform Abstract: Deoxygenation of Biomass-Derived Feedstocks: Oxorhenium-Catalyzed Deoxydehydration of Sugars and Sugar Alcohols., ChemInform, 2013, 44, 4
  20. 20
    Alana L. Denning, Huong Dang, Zhimin Liu, Kenneth M. Nicholas, Friederike C. Jentoft, Deoxydehydration of Glycols Catalyzed by Carbon-Supported Perrhenate, ChemCatChem, 2013, 5, 12
  21. 21
    Pieter C. A. Bruijnincx, Bert M. Weckhuysen, Die Schiefergasrevolution: eine Chance zur Herstellung von Chemikalien auf Biobasis?, Angewandte Chemie, 2013, 125, 46
  22. 22
    Lily Hills, Raquel Moyano, Francisco Montilla, Antonio Pastor, Agustín Galindo, Eleuterio Álvarez, Fabio Marchetti, Claudio Pettinari, Dioxomolybdenum(VI) Complexes with Acylpyrazolonate Ligands: Synthesis, Structures, and Catalytic Properties, European Journal of Inorganic Chemistry, 2013, 2013, 19
  23. 23
    Mika Shiramizu, F. Dean Toste, Expanding the Scope of Biomass-Derived Chemicals through Tandem Reactions Based on Oxorhenium-Catalyzed Deoxydehydration, Angewandte Chemie, 2013, 125, 49
  24. 24
    Mika Shiramizu, F. Dean Toste, Expanding the Scope of Biomass-Derived Chemicals through Tandem Reactions Based on Oxorhenium-Catalyzed Deoxydehydration, Angewandte Chemie International Edition, 2013, 52, 49
  25. 25
    Bo Zhang, Su Li, Shuang Yue, Mirza Cokoja, Ming-Dong Zhou, Shu-Liang Zang, Fritz E. Kühn, Imidazolium perrhenate ionic liquids as efficient catalysts for the selective oxidation of sulfides to sulfones, Journal of Organometallic Chemistry, 2013, 744, 108

    CrossRef

  26. 26
    Shuo Liu, Aysegul Senocak, Jessica L. Smeltz, Linan Yang, Benjamin Wegenhart, Jing Yi, Hilkka I. Kenttämaa, Elon A. Ison, Mahdi M. Abu-Omar, Mechanism of MTO-Catalyzed Deoxydehydration of Diols to Alkenes Using Sacrificial Alcohols, Organometallics, 2013, 32, 11, 3210

    CrossRef

  27. 27
    Peng Liu, Kenneth M. Nicholas, Mechanism of Sulfite-Driven, MeReO3-Catalyzed Deoxydehydration of Glycols, Organometallics, 2013, 32, 6, 1821

    CrossRef

  28. 28
    Shuanglin Qu, Yanfeng Dang, Mingwei Wen, Zhi-Xiang Wang, Mechanism of the Methyltrioxorhenium-Catalyzed Deoxydehydration of Polyols: A New Pathway Revealed, Chemistry - A European Journal, 2013, 19, 12
  29. 29
    Ties J. Korstanje, Johann T. B. H. Jastrzebski, Robertus J. M. Klein Gebbink, Mechanistic Insights into the Rhenium-Catalyzed Alcohol-To-Olefin Dehydration Reaction, Chemistry - A European Journal, 2013, 19, 39
  30. 30
    Charles S. Yeung, Recent catalytic approaches to chemical synthesis from carbon feedstocks, Pure and Applied Chemistry, 2013, 85, 5

    CrossRef

  31. 31
    Kazuhisa Murata, Megumu Inaba, Isao Takahara, Yanyong Liu, Selective hydrocarbon production by the hydrocracking of glucose, Reaction Kinetics, Mechanisms and Catalysis, 2013, 110, 2, 295

    CrossRef

  32. 32
    Pieter C. A. Bruijnincx, Bert M. Weckhuysen, Shale Gas Revolution: An Opportunity for the Production of Biobased Chemicals?, Angewandte Chemie International Edition, 2013, 52, 46
  33. 33
    Hirokazu Kobayashi, Atsushi Fukuoka, Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass, Green Chemistry, 2013, 15, 7, 1740

    CrossRef

  34. 34
    Garry Chapman, Kenneth M. Nicholas, Vanadium-catalyzed deoxydehydration of glycols, Chemical Communications, 2013, 49, 74, 8199

    CrossRef

  35. 35
    Taeho Hwang, Bryan R. Goldsmith, Baron Peters, Susannah L. Scott, Water-Catalyzed Activation of H2O2by Methyltrioxorhenium: A Combined Computational–Experimental Study, Inorganic Chemistry, 2013, 52, 24, 13904

    CrossRef

  36. 36
    Saikat Dutta, Deoxygenation of Biomass-Derived Feedstocks: Hurdles and Opportunities, ChemSusChem, 2012, 5, 11