SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Sarah Sirin, Rajesh Kumar, Carlos Martinez, Michael J. Karmilowicz, Preeyantee Ghosh, Yuriy A. Abramov, Van Martin, Woody Sherman, A Computational Approach to Enzyme Design: Predicting ω-Aminotransferase Catalytic Activity Using Docking and MM-GBSA Scoring, Journal of Chemical Information and Modeling, 2014, 54, 8, 2334

    CrossRef

  2. 2
    Richard Obexer, Sabine Studer, Lars Giger, Daniel M. Pinkas, Markus G. Grütter, David Baker, Donald Hilvert, Active Site Plasticity of a Computationally Designed Retro-Aldolase Enzyme, ChemCatChem, 2014, 6, 4
  3. 3
    Sojin Moon, Du-kyo Jung, George N. Phillips, Euiyoung Bae, An integrated approach for thermal stabilization of a mesophilic adenylate kinase, Proteins: Structure, Function, and Bioinformatics, 2014, 82, 9
  4. 4
    Giulia Palermo, Pablo Campomanes, Andrea Cavalli, Ursula Rothlisberger, Marco De Vivo, Anandamide Hydrolysis in FAAH Reveals a Dual Strategy for Efficient Enzyme-Assisted Amide Bond Cleavage via Nitrogen Inversion, The Journal of Physical Chemistry B, 2014, 141003153635009

    CrossRef

  5. 5
    Takashi Matsuo, Shun Hirota, Artificial enzymes with protein scaffolds: Structural design and modification, Bioorganic & Medicinal Chemistry, 2014, 22, 20, 5638

    CrossRef

  6. 6
    Claudia Vicari, Ivo H. Saraiva, Ornella Maglio, Flavia Nastri, Vincenzo Pavone, Ricardo O. Louro, Angela Lombardi, Artificial heme-proteins: determination of axial ligand orientations through paramagnetic NMR shifts, Chemical Communications, 2014, 50, 29, 3852

    CrossRef

  7. 7
    Lucas G. Nivón, Sinisa Bjelic, Chris King, David Baker, Automating human intuition for protein design, Proteins: Structure, Function, and Bioinformatics, 2014, 82, 5
  8. 8
    Ivan V Korendovych, William F DeGrado, Catalytic efficiency of designed catalytic proteins, Current Opinion in Structural Biology, 2014, 27, 113

    CrossRef

  9. 9
    Isabelle André, Gabrielle Potocki-Véronèse, Sophie Barbe, Claire Moulis, Magali Remaud-Siméon, CAZyme discovery and design for sweet dreams, Current Opinion in Chemical Biology, 2014, 19, 17

    CrossRef

  10. 10
    Steven M. Bachrach, Challenges in computational organic chemistry, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4, 5
  11. 11
    Robert J. Floor, Hein J. Wijma, Dana I. Colpa, Aline Ramos-Silva, Peter A. Jekel, Wiktor Szymański, Ben L. Feringa, Siewert J. Marrink, Dick B. Janssen, Computational Library Design for Increasing Haloalkane Dehalogenase Stability, ChemBioChem, 2014, 15, 11
  12. 12
    H. J. Wijma, R. J. Floor, P. A. Jekel, D. Baker, S. J. Marrink, D. B. Janssen, Computationally designed libraries for rapid enzyme stabilization, Protein Engineering Design and Selection, 2014, 27, 2, 49

    CrossRef

  13. 13
    Maria P Frushicheva, Matthew JL Mills, Patrick Schopf, Manoj K Singh, Ram B Prasad, Arieh Warshel, Computer aided enzyme design and catalytic concepts, Current Opinion in Chemical Biology, 2014, 21, 56

    CrossRef

  14. 14
    Daniel W Watkins, Craig T Armstrong, JL Ross Anderson, De novo protein components for oxidoreductase assembly and biological integration, Current Opinion in Chemical Biology, 2014, 19, 90

    CrossRef

  15. 15
    Mukesh Mahajan, Surajit Bhattacharjya, Designed Di-Heme Binding Helical Transmembrane Protein, ChemBioChem, 2014, 15, 9
  16. 16
    Adriana Ilie, Manfred T. Reetz, Directed Evolution of Artificial Metalloenzymes, Israel Journal of Chemistry, 2014, 54, 11-12
  17. 17
    Miriam Kaltenbach, Nobuhiko Tokuriki, Dynamics and constraints of enzyme evolution, Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 7
  18. 18
    Sojin Moon, Ryan M. Bannen, Thomas J. Rutkoski, George N. Phillips, Euiyoung Bae, Effectiveness and limitations of local structural entropy optimization in the thermal stabilization of mesophilic and thermophilic adenylate kinases, Proteins: Structure, Function, and Bioinformatics, 2014, 82, 10
  19. 19
    Cindy Schulenburg, Brian G. Miller, Enzyme Recruitment and Its Role in Metabolic Expansion, Biochemistry, 2014, 53, 5, 836

    CrossRef

  20. 20
    Artur Reimer, Sharon Yagur-Kroll, Shimshon Belkin, Shantanu Roy, Jan Roelof van der Meer, Escherchia coli ribose binding protein based bioreporters revisited, Scientific Reports, 2014, 4,

    CrossRef

  21. 21
    J. Bonet, J. Segura, J. Planas-Iglesias, B. Oliva, N. Fernandez-Fuentes, Frag'r'Us: knowledge-based sampling of protein backbone conformations for de novo structure-based protein design, Bioinformatics, 2014, 30, 13, 1935

    CrossRef

  22. 22
    Georg Steinkellner, Christian C. Gruber, Tea Pavkov-Keller, Alexandra Binter, Kerstin Steiner, Christoph Winkler, Andrzej Łyskowski, Orsolya Schwamberger, Monika Oberer, Helmut Schwab, Kurt Faber, Peter Macheroux, Karl Gruber, Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations, Nature Communications, 2014, 5,

    CrossRef

  23. 23
    N. Preiswerk, T. Beck, J. D. Schulz, P. Milovnik, C. Mayer, J. B. Siegel, D. Baker, D. Hilvert, Impact of scaffold rigidity on the design and evolution of an artificial Diels-Alderase, Proceedings of the National Academy of Sciences, 2014, 111, 22, 8013

    CrossRef

  24. 24
    Igor D Petrik, Jing Liu, Yi Lu, Metalloenzyme design and engineering through strategic modifications of native protein scaffolds, Current Opinion in Chemical Biology, 2014, 19, 67

    CrossRef

  25. 25
    Dimitrios Spiliotopoulos, Amedeo Caflisch, Molecular Dynamics Simulations of Bromodomains Reveal Binding-Site Flexibility and Multiple Binding Modes of the Natural Ligand Acetyl-Lysine, Israel Journal of Chemistry, 2014, 54, 8-9
  26. 26
    Sarah Sirin, David A. Pearlman, Woody Sherman, Physics-based enzyme design: Predicting binding affinity and catalytic activity, Proteins: Structure, Function, and Bioinformatics, 2014, 82, 12
  27. 27
    Arvind Ramanathan, Andrej Savol, Virginia Burger, Chakra S. Chennubhotla, Pratul K. Agarwal, Protein Conformational Populations and Functionally Relevant Substates, Accounts of Chemical Research, 2014, 47, 1, 149

    CrossRef

  28. 28
    Matthias Höhne, Uwe T. Bornscheuer, Protein Engineering from “Scratch” Is Maturing, Angewandte Chemie International Edition, 2014, 53, 5
  29. 29
    Matthias Höhne, Uwe T. Bornscheuer, Protein-Engineering aus dem “Nichts” wird praktikabel, Angewandte Chemie, 2014, 126, 5
  30. 30
    Marc Dürrenberger, Thomas R Ward, Recent achievments in the design and engineering of artificial metalloenzymes, Current Opinion in Chemical Biology, 2014, 19, 99

    CrossRef

  31. 31
    Ye Li, Patrick C. Cirino, Recent advances in engineering proteins for biocatalysis, Biotechnology and Bioengineering, 2014, 111, 7
  32. 32
    Manoj Kumar Singh, Zhen T. Chu, Arieh Warshel, Simulating the Catalytic Effect of a Designed Mononuclear Zinc Metalloenzyme that Catalyzes the Hydrolysis of Phosphate Triesters, The Journal of Physical Chemistry B, 2014, 118, 42, 12146

    CrossRef

  33. 33
    Jürgen Pleiss, Systematic Analysis of Large Enzyme Families: Identification of Specificity- and Selectivity-Determining Hotspots, ChemCatChem, 2014, 6, 4
  34. 34
    Gonzalo Jiménez-Osés, Sílvia Osuna, Xue Gao, Michael R Sawaya, Lynne Gilson, Steven J Collier, Gjalt W Huisman, Todd O Yeates, Yi Tang, K N Houk, The role of distant mutations and allosteric regulation on LovD active site dynamics, Nature Chemical Biology, 2014, 10, 6, 431

    CrossRef

  35. 35
    K. N. Houk, Peng Liu, Using Computational Chemistry to Understand & Discover Chemical Reactions, Daedalus, 2014, 143, 4, 49

    CrossRef

  36. 36
    Vincent Frappier, Rafael Najmanovich, Vibrational entropy differences between mesophile and thermophile proteins and their use in protein engineering, Protein Science, 2014, 23, 12
  37. 37
    Antony J. Burton, Franziska Thomas, Christopher Agnew, Kieran L. Hudson, Stephen E. Halford, R. Leo Brady, Derek N. Woolfson, Accessibility, Reactivity, and Selectivity of Side Chains within a Channel ofde NovoPeptide Assembly, Journal of the American Chemical Society, 2013, 135, 34, 12524

    CrossRef

  38. 38
    Jared C. Lewis, Artificial Metalloenzymes and Metallopeptide Catalysts for Organic Synthesis, ACS Catalysis, 2013, 3, 12, 2954

    CrossRef

  39. 39
    Manfred T. Reetz, Biocatalysis in Organic Chemistry and Biotechnology: Past, Present, and Future, Journal of the American Chemical Society, 2013, 135, 34, 12480

    CrossRef

  40. 40
    Gert Kiss, Nihan Celebi-Oelcuem, Rocco Moretti, David Baker, K. N. Houk, ChemInform Abstract: Computational Enzyme Design, ChemInform, 2013, 44, 36
  41. 41
    Peter Schuster, Designing living matter. Can we do better than evolution?, Complexity, 2013, 18, 6
  42. 42
    Rebecca Blomberg, Hajo Kries, Daniel M. Pinkas, Peer R. E. Mittl, Markus G. Grütter, Heidi K. Privett, Stephen L. Mayo, Donald Hilvert, Precision is essential for efficient catalysis in an evolved Kemp eliminase, Nature, 2013, 503, 7476, 418

    CrossRef

  43. 43
    Teunke Rossum, Servé W. M. Kengen, John Oost, Reporter-based screening and selection of enzymes, FEBS Journal, 2013, 280, 13
  44. 44
    Joshua Schmidt, Clayton Ehasz, Michael Epperson, Kimberly Klas, Justin Wyatt, Mirko Hennig, Marcello Forconi, The effect of the hydrophobic environment on the retro-aldol reaction: comparison to a computationally-designed enzyme, Organic & Biomolecular Chemistry, 2013, 11, 48, 8419

    CrossRef

  45. 45
    Computational Approaches to Understanding Enzymes,
  46. 46
    Ludmila Martínková, Andreas Stolz, Fred van Rantwijk, Nicola D'Antona, Dean Brady, Linda G. Otten, Nitrile Converting Enzymes Involved in Natural and Synthetic Cascade Reactions,