Predicting the Rotational Tumbling of Dynamic Multidomain Proteins and Supramolecular Complexes

Authors

  • Dr. Nasrollah Rezaei-Ghaleh,

    Corresponding author
    1. Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Am Fassberg 11, 37077 Göttingen (Germany)
    2. Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen (Germany)
    • Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Am Fassberg 11, 37077 Göttingen (Germany)

    Search for more papers by this author
  • Frederik Klama,

    1. Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen (Germany)
    Search for more papers by this author
  • Dr. Francesca Munari,

    1. Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Am Fassberg 11, 37077 Göttingen (Germany)
    2. Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen (Germany)
    Search for more papers by this author
  • Prof. Dr. Markus Zweckstetter

    Corresponding author
    1. Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Am Fassberg 11, 37077 Göttingen (Germany)
    2. Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen (Germany)
    • Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Am Fassberg 11, 37077 Göttingen (Germany)

    Search for more papers by this author

  • This work was supported through the DFG Collaborative Research Center 860, Project B2 (M.Z.) and the DFG research unit FOR934 (M.Z.).

Abstract

original image

Time is of the essence: The rotational motion of biomolecules depends on intra- and intermolecular interactions and thus on distinct functional states. A new method, called HYCUD accurately predicts rotational correlation times in complex dynamic systems. It gives insights into the motional behavior of multidomain proteins in their free form and in supramolecular complexes.

Ancillary