Modeling Heat Dissipation at the Nanoscale: An Embedding Approach for Chemical Reaction Dynamics on Metal Surfaces

Authors

  • Dr. Jörg Meyer,

    Corresponding author
    1. Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München (Germany) http://www.th4.ch.tum.de
    2. Present address: Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (The Netherlands)
    • Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München (Germany) http://www.th4.ch.tum.de===

    Search for more papers by this author
  • Prof. Dr. Karsten Reuter

    1. Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München (Germany) http://www.th4.ch.tum.de
    Search for more papers by this author

  • We thank the Deutsche Forschungsgemeinschaft for funding and the Leibniz Rechenzentrum der Bayerischen Akademie der Wissenschaften for CPU time.

Abstract

We present an embedding technique for metallic systems that makes it possible to model energy dissipation into substrate phonons during surface chemical reactions from first principles. The separation of chemical and elastic contributions to the interaction potential provides a quantitative description of both electronic and phononic band structure. Application to the dissociation of O2 at Pd(100) predicts translationally “hot” oxygen adsorbates as a consequence of the released adsorption energy (ca. 2.6 eV). This finding questions the instant thermalization of reaction enthalpies generally assumed in models of heterogeneous catalysis.

Ancillary