A Triad of Highly Reduced, Linear Iron Nitrosyl Complexes: {FeNO}8–10



Given the importance of Fe–NO complexes in both human biology and the global nitrogen cycle, there has been interest in understanding their diverse electronic structures. Herein a redox series of isolable iron nitrosyl complexes stabilized by a tris(phosphine)borane (TPB) ligand is described. These structurally characterized iron nitrosyl complexes reside in the following highly reduced Enemark–Feltham numbers: {FeNO}8, {FeNO}9, and {FeNO}10. These {FeNO}8–10 compounds are each low-spin, and feature linear yet strongly activated nitric oxide ligands. Use of Mössbauer, EPR, NMR, UV/Vis, and IR spectroscopy, in conjunction with DFT calculations, provides insight into the electronic structures of this uncommon redox series of iron nitrosyl complexes. In particular, the data collectively suggest that {TPBFeNO}8–10 are all remarkably covalent. This covalency is likely responsible for the stability of this system across three highly reduced redox states that correlate with unusually high Enemark–Feltham numbers.