SEARCH

SEARCH BY CITATION

Keywords:

  • mixed integer nonlinear programming;
  • nondominated sorting genetic algorithm;
  • multiobjective optimization;
  • batch plant;
  • design

Abstract

The optimal design of a multiproduct batch chemical plant is formulated as a multiobjective optimization problem, and the resulting constrained mixed-integer nonlinear program (MINLP) is solved by the nondominated sorting genetic algorithm approach (NSGA-II). By putting bounds on the objective function values, the constrained MINLP problem can be solved efficiently by NSGA-II to generate a set of feasible nondominated solutions in the range desired by the decision-maker in a single run of the algorithm. The evolution of the entire set of nondominated solutions helps the decision-maker to make a better choice of the appropriate design from among several alternatives. The large set of solutions also provides a rich source of excellent initial guesses for solution of the same problem by alternative approaches to achieve any specific target for the objective functions. Copyright © 2006 Curtin University of Technology and John Wiley & Sons, Ltd.