SEARCH

SEARCH BY CITATION

Keywords:

  • proteins;
  • blending;
  • miscibility;
  • thermal properties;
  • mechanical properties

Abstract

To improve the mechanical and water vapor barrier properties of soy protein films, the transparent films were prepared by blending 5 wt % soy protein isolate (SPI) alkaline water solution with 2 wt % carboxymethylated konjac glucomannan (CMKGM) aqueous solution and drying at 30 °C. The structure and properties of the blend films were studied by infrared spectroscopy, wide-angle X-ray diffraction spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential thermal analysis, and measurements of mechanical properties and water vapor transmission. The results demonstrated a strong interaction and good miscibility between SPI and CMKGM due to intermolecular hydrogen bonding. The thermostability and mechanical and water vapor barrier properties of blend films were greatly enhanced due to the strong intermolecular hydrogen bonding between SPI and CMKGM. The tensile strength and breaking elongation of blend films increased with the increase of CMKGM content: the maximum values achieved were 54.6 MPa and 37%, respectively, when the CMKGM content was 70 wt %. The water vapor transmission of blend films decreased with the increase of CMKGM content: the lowest value achieved was 74.8 mg · cm−2 · d−1 when the CMKGM content was 70 wt %. The SPI–CMKGM blend films provide promising applications to fresh food packaging. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1095–1099, 2003