Structural properties of CrF3- and MnCl2-filled poly(vinyl alcohol) films



Poly(vinyl alcohol) (PVA) films filled with different amounts of CrF3 and MnCl2 were prepared by the casting method. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis were used to study the changes in the structure properties that occurred because of filling. The changes occurring in the measured parameters with increasing filler contents were interpreted in terms of the structural modification of the PVA matrix. All the studied samples had a main melting temperature due to the main crystalline phase of PVA. The intensity and position of this peak depended on the filling level. However, the samples of CrF3-filled PVA films with a filling level greater than or equal to 10 wt % revealed another melting temperature, which indicated the presence of a new crystalline phase in addition to the main crystalline phase. The changes that occurred in the degree of crystallinity of the studied samples were examined. The calculated degree of crystallinity was formulated numerically to be an exponential function of the filling level. The XRD patterns of the studied samples confirmed the DSC results. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1115–1120, 2003