Electron microscopical observations of radiation-induced rayon–styrene graft copolymers were published by Kaeppner and Huang in 1965. The present paper reports electron microscopical investigations on the relationship of the structure of vinyl–cotton graft polymers to the original morphology of the cotton fiber and into the distribution of the grafted vinyl polymer in the cotton fiber structure. The grafted vinyl monomers investigated in this study were acrylonitrile, styrene, methyl methacrylate, and vinyl acetate. Two radiation-induced procedures were used: simultaneous irradiation grafting and post-irradiation grafting. Ceric ion grafting of acrylonitrile to cotton was included for purposes of comparison. Distribution of the vinyl polymer within the cotton fiber is illustrated by a series of electron micrographs, selected as typical of the particular grafted species under consideration. Results indicate that the diffusion rate of monomer into the cellulose fiber plays an important role in the final distribution of polyacrylonitrile grafts within the fiber. Uniform distribution of polyacrylonitrile in the fiber was achieved by simultaneous irradiation grafting of acrylonitrile on a highly substituted cyanoethylated cotton. In samples of low degree of cyanoethylation the distribution of graft polymer was non-uniform. In grafting initiated by ceric ion the acrylonitrile graft polymer was evenly distributed. Polystyrene–cotton copolymers from grafts, made by simultaneous irradiation of cotton in methanol solutions of the styrene monomer, were uniform throughout the fiber but showed opening of structure associated with the amount of graft formed. Grafting of methyl methacrylate occurred only in the peripheral regions of the fiber; by contrast, grafting of vinyl acetate was uniform throughout the fiber wall. Important factors governing the successful irradiation grafting in cotton fibers are choice of solvent, ratio of monomer to cellulose, nature of prior chemical modification of the cellulose, and total irradiation dosage.